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Abstract

This work studies the influences of tooth friction on parametric instabilities and dynamic response of a single-mesh gear
pair. A mechanism whereby tooth friction causes gear tooth bending is shown to significantly impact the dynamic
response. A dynamic translational-rotational model is developed to consider this mechanism together with the other
contributions of tooth friction and mesh stiffness fluctuation. An iterative integration method to analyze parametric
instabilities is proposed and compared with an established numerical method. Perturbation analysis is conducted to find
approximate solutions that predict and explain the numerical parametric instabilities. The effects of time-varying friction
moments about the gear centers and friction-induced tooth bending are critical to parametric instabilities and dynamic
response. The impacts of friction coefficient, bending effect, contact ratio, and modal damping on the stability boundaries
are revealed. Finally, the friction bending effect on the nonlinear dynamic response is examined and validated by finite
element results.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the various treatments of the gear mesh characteristics in the numerous mathematical gear models found
in the literature [1-3], most models neglect the dynamic contribution of tooth friction compared with mesh
forces normal to the tooth surface. Parametric excitation from variable mesh stiffness and geometric
deviations of tooth surfaces are usually treated as the dominant sources of gear vibration [4,5]. Recently, tooth
friction was demonstrated as an important factor in gear dynamics. Velex and Cahouet [6] analyze tooth
friction in spur and helical gear dynamics. The comparison between simulated and measured bearing forces
reveals the potentially significant contribution of tooth friction to gear vibration. The importance of tooth
friction to structure-borne vibration of helical gear systems and to vibration reduction of gears with minimal
static transmission error is discussed in Refs. [7,8]. Vaishya and Houser [9] demonstrate the powerful influence
of tooth friction on the vibro-acoustic performance of gears.

Due to the involute shape of gear teeth, the mesh contact undergoes rolling and sliding, resulting in sliding
friction force normal to the line of action. Variable friction coefficients are applied in studies of gear wear and
power efficiency. The coefficient of friction is a function of sliding velocity, surface roughness, lubrication film,
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contact load, temperature, etc. Theoretical friction coefficients are derived from elasto-hydrodynamic
lubrication and tribology theory [10-12]. The experimental works in Refs. [6,9,13], however, show that a
constant friction coefficient is acceptable for dynamic analysis. The measured dynamic friction loads show
friction coefficients of approximately 0.04-0.06 [13]. Benedict and Kelley’s empirical equation shows the
coefficient of friction varies between 0.03 and 0.1 [14]. The value of 0.1 (not typical condition of well-
lubricated gears) is commonly used in gear dynamics [6,15-18].

The effects of tooth friction include moments about the gear centers from friction forces perpendicular to
the line of action (affecting gear rotations), excitation of off-line-of-action gear translations, nonlinear
dependence of friction on the sliding velocity, and energy dissipation. Iida et al. [19] examine time-varying
tooth friction using a simplified dynamic model with friction as excitation and damping. Hochmann [20]
focuses on the periodic external excitation from tooth friction while assuming constant mesh stiffness. Gunda
and Singh [18] and Vaishya and Singh [16,17] present dynamic rotational models. The sliding mechanism is
formulated based on dynamic mesh force, and the friction term appears with time-varying parameters.
Parametric excitation also results from variable mesh stiffness that causes instability and severe vibrations at
certain mesh frequencies [5,21-25]. Vaishya and Singh [16] apply Floquet theory to their dynamic rotational
model to study parametric instabilities from variable mesh stiffness and tooth friction.

Previous works focus on models having only rotational degrees of freedom, where the only contributions
from tooth friction are moments about the gear centers. Translational-rotational models are studied recently
[26]. Friction force, however, also affects gear tooth bending [27], which has not been previously examined for
gear dynamics. This paper develops and analyzes a dynamic translational-rotational model admitting this
additional contribution of tooth friction (bending effect) as well as gear translations. The model includes this
friction bending effect combined with time-varying friction force orthogonal to the line of action, time-varying
mesh stiffness, and contact loss nonlinearity. The friction bending effect is shown to be important for
instability and dynamic response of gear mesh deflections. Parametric instabilities and quasi-periodic response
due to friction and modal interactions are studied. An iterative numerical method based on Floquet-Liapunov
theory and Peano—Baker series is proposed for stability analysis. This method is evaluated against a well-
known numerical method. Furthermore, perturbation analysis is conducted to find approximate solutions that
predict and explain the numerical parametric instabilities. The predicted instabilities occur in practical gears as
resonance-like vibration near the mesh frequency and particular multiples of mesh frequency that are close to
natural frequencies in combination. The large response triggers tooth separation nonlinearity that bounds the
vibration. The effects of time-varying friction moment and friction bending effect are found to be critical for
combination instabilities and certain single-mode instabilities. The impacts of friction coefficient, bending
effect, contact ratio, and modal damping on stability boundaries are revealed. Finally, the bending effect of
tooth friction on nonlinear dynamic response is discussed and validated by finite element results.

2. Tooth bending effect of friction force

The elastic deflection of a pair of loaded gear teeth consists of deflection of the tooth as a cantilever beam,
gear body flexibility, and Hertzian contact compression. The normal contact force and tangential friction
force both contribute to tooth bending. Tooth bending deflection for mesh force along the line of action is
studied as a non-uniform cantilever beam in Ref. [27]. Extending that derivation to include friction
perpendicular to the line of action gives the total deflection of a pair of loaded gear teeth as

g COS @, — g, sin D 1 9. sin P, — g5 COS @, 1
W = — | Ny, — " 1
( EI +k,) Lt < EI T k,>f L O

where N, ; and f;; are contact and friction forces of tooth pair i, respectively; ¢, is the pressure angle at the
current mesh position; EI denotes tooth bending rigidity; g. and g, are tooth geometric factors based on
parameters defined in Ref. [27]; and k., is the effective rotational stiffness of the gear flank as reduced from Lee
et al. [27], which is assumed the same for both forces. Although the compliance for N, ; is softer than that for
f1.;» they are of the same order.

To demonstrate the significance of the friction bending effect, a pilot study static analysis is conducted on a
pair of spur gears in Fig. la. Gear 1 is loaded with torque 7 and gear 2 is fixed. The equilibrium conditions
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(a)

(b)

Fig. 1. (a) Mesh forces A and B are contact positions of the two tooth pairs. (b) Dynamic model of two gears with tooth friction.

yield the resultant contact and friction forces

z Tl zZ z
Ny = N i = z > = i= -N Sgn(v»),ua‘, (2)
: ; b 1= =y sgn() o /i ;fl’ 1 ; o
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where r; » denotes gear base radii; z is the number of tooth pairs in contact; v; y; and /; are sliding velocities,
friction coefficients and friction force moment arms (Fig. 1b), respectively; and o; = N, ;/N; are load sharing
factors between the z tooth pairs. The contact force of tooth pair i is o;N; and the friction force is p;o:N;
according to Coulomb friction.

The friction moments about the gear centers depend on the position of the contact points. The moment
arms of friction forces f1; in Fig. 1a are shown in Fig. 2a. The difference between the two moment arms is a
base pitch and py = ritan @, p; = po—2nyr;, and p, = po+ 2n(c—1)r;, where ¢ is the pressure angle at the pitch
point and c is the contact ratio. y denotes the position in a mesh period where double-tooth contact starts.

Contact force variations results from the friction force. These variations relative to the frictionless condition
are
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Fig. 2. (a) Moment arms of two friction forces. (b) Mesh stiffnesses (normalized by &) of gear tooth pairs including friction bending effect
( the first tooth pair; -- the second tooth pair).
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where N; is greater than the nominal contact force 7)/r; when contact occurs in the approach region
(sgn(v;) = 1) where the sliding makes gear 1 approach gear 2. On the other hand, N, is smaller than the
nominal force when contact occurs in the recess region (sgn(v;) = —1) where the sliding acts to separate gear 1
from gear 2. In practice, [;/r; <1 implying |AN;| <|Afi|. From Egs. (1) and (3), mesh deflection variation due to
tooth friction is AW = AN, /k,,,+ Afi/ks,, Wwhere k,,, and kg, are the mesh stiffness and friction bending stiffness,
respectively, which are reciprocals of the compliances in Eq. (1). AW includes the impact of friction moments
and the bending effect of friction forces. Note that the traditional analytical mesh deflection variation is
AW = AN,/k,,, which only considers the moments of friction forces.

A specialized finite element program is used to benchmark the analytical model. The finite element model
uses detailed contact analysis including Coulomb friction and careful tracking of the tooth contact kinematics.
Its main features and validation against nonlinear gear vibration experiments are outlined in Refs. [28,29].

Variations of mesh deflection of the gear pair in Table 1 and u; = u, = u = 0.1, obtained by finite element
and analytical predictions are shown in Fig. 3. Significant differences emerge from the friction bending effect.
For a contact ratio less than two, there is a pair of gear teeth engaged from mesh period 0 (pitch point) to 0.84.
Another gear pair starts contact from 0.1 to 1. For single-tooth contact in the recess region (mesh period
€(0,0.1]), ANy = —u;[1N1/r1 <0 such that AW~ —2um when the friction bending effect is neglected. The
bending effect of friction force Af; = u;N;>0, however, increases the mesh deflection by about 0.5 um.
Combining the effects of friction force moment and bending, AW~ —1.5 um. The mesh deflection variation
from the friction bending effect is 25% of the variation from the friction moment alone. For single-tooth

Table 1
Parameters of example gears

Pinion Gear
Number of teeth 38 55
Modulus (mm) 2.54 2.54
Base radius (mm) 45.35 65.64
Inertias I; (kgm?) 2.62e—3 3.27e-3
Mesh parameters k=298¢8N/m, T) = 100Nm, ¢ = 1.4

o=0.6,y=0.28

Mesh deflection variation AW (um)
o

2 LEL L L L L
0 0.2 0.4 0.6 0.8 1
Mesh period
Fig. 3. Mesh deflection variation comparisons for gears in Table 1 and 77, = 100 N m (—: finite element ¢ = 0.1; --: analytical result with

friction bending and p = 0.1; ...: analytical result without friction bending and u = 0.1).
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contact in the approach region (mesh period €(0.84,1]), AN| = uxlr/ri N1 >0 such that, without the friction
bending effect, AW 1.75 um, which has smaller magnitude than in the recess region due to /; >/ (Fig. 2a).
The bending effect of friction force Af; = —u,N; <0 decreases the mesh deflection by about 0.5 um, similar to
the recess region because |Afi] is the same for the recess and approach regions. Combining the effects of
friction force moment and bending, AW=1.25 um. The mesh deflection variation from the friction bending
effect is 28% of the variation from friction moment. Thus, the effect of friction force moment and bending
are significant for mesh defection in the single-tooth contact region. Note that pure rolling occurs at the
pitch point (mesh period = 0) such that AN; = Af; =0 and AW = 0. The mesh deflection and friction force
are discontinuous at the pitch point due to the discontinuity of sliding velocity direction. For the double-
tooth region (mesh period €(0.1,0.84]), AN; = (oo2bb—pioql)/riN1~0 and AW=0. In addition,
Af1 = (u1o01—ur00)N1 ~0 due to the cancellation from two tooth pairs. Thus, the effect of friction force is
negligible in this area. This may not be the case in dynamic analysis, however.

Summarizing, the contribution of tooth bending caused by friction to static mesh deflection is comparable
to that from the friction force moment. The static analysis example shows that friction moments lower the
static transmission error in the recess region of single-tooth contact and increase the static transmission error
in the approach region of single-tooth contact. The friction bending effect, however, counteracts static
transmission error variations arising from the friction moment in the static case. Thus, the combined effect of
friction moment and friction bending on static transmission error variation (relative to the frictionless case) is
destructive and so the individual effects are less evident in measured static transmission error. As will be
shown, the combined effect in the dynamic case is more complex, however, and can be destructive or
constructive depending on the modal properties. The interaction between this friction bending effect and other
time-varying parameters is potentially important to the stability and dynamic response.

3. Mathematical model
3.1. Modeling of friction bending effect

For involute gear teeth, variation of mesh stiffness and tooth friction are the only excitations in this work.
In contrast to existing gear models that treat gear meshes as one elastic element even when multiple tooth pairs
are in contact, this study models each tooth pair as a separate elastic element, and they are connected in
parallel. Although the number of tooth pairs in contact varies as the gears roll, by assigning zero mesh stiffness
for the tooth pair out of contact there are always Z = ceil(c) pairs of teeth in contact during a mesh period,
where ¢ is the contact ratio and ceil(c¢) gives the smallest integer greater than c.

Mesh stiffness usually reflects the linear relation between normal load and mesh deflection. As discussed above,
however, the bending effect of friction forces gives rise to pronounced impact on mesh deflection. In other words,
applying the same normal load, the mesh deflections are different for friction and frictionless conditions. This
contribution from friction bending can be included in an effective mesh stiffness. Substituting Eq. (2) into Eq. (1)
and isolating W/N ; the mesh stiftness of tooth pair 7 including the effect of friction bending is

Nii - . .
ki = ﬁ = kil — sgn(v)Bu]™" ~ kil + sgn(v)Bu,
~ . sin @, — g, cos ¢+ El/k, ~
j9eSin @ = g5 cos e+ EUK, oy om e, @

ge €OS @ — gy sin b + EI/kr ’

where 3 is the ratio of compliances of the two forces in Eq. (1), &; is the mesh stiffness without friction, and k; is
the effective mesh stiffness with friction. 3 is less than 1 and varies periodically over a mesh cycle. The mean value
of B is used in this study.

From Eq. (4), the effective mesh stiffness is affected by the compliance ratio, friction coefficient and
dynamic sliding velocity from nominal gear speed and gear vibration. The effect of the vibratory velocity,
however, is negligible compared to the nominal velocity 7; = Qri(tan ¢, ; — tan ¢, ), where Q, is the nominal
rotation speed of the input gear and ¢ ; is the pressure angle of tooth i of gear z [16,17]. Low contact ratio
gears (¢ <2) are considered in this study such that Z = 2. For the mesh cycle shown in Fig. 2, the pitch point is
at zero, and the tooth pair in contact from mesh period 0 to c—1+7y, defined as the first tooth pair, is in the
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recess region (sgn(v;)<0). The second tooth pair engages from y to 1 and it is in the approach region
(sgn(v2)>0).

Defining & as the mean value of frictionless mesh stiffness and ¢ as the ratio of peak—peak to mean value of
the mesh stiffness, the frictionless mesh stiffnesses are k; = k[1 + &(1 — ¢)] and k» = 0 for segment 1 (indicated in
Fig. 2b), and ki=0,k = k[1 + &(1 — ¢)] for segment 3. In segment 2, two tooth pairs share the gear load such
that &, decreases linearly from ak[l + &2 — ¢)] to (1 — k[l + &2 — ¢)] and k» increases from (1 —o) k[1+
&(2 — ¢)] to ak[1 + &2 — ¢)], where o is the load sharing factor at mesh period y. o is approximated by the ratio of
the static load of tooth pair 1 to the resultant tooth load, which is calculated by finite element analysis. Note that
ki +ky = k[1 + &(1 — ¢)] for single-tooth contact and ki +ky = k[1 + &2 — ¢)] for double-tooth contact.

The quasi-static frictional mesh stiffnesses shown in Fig. 2b are found by substituting the above k: into
Eq. (4). The mesh stiffnesses normalized by k are

Segment 1 : ky/k=x; =1 =)l +el—c)], k=0

Segment 2 : kl/lg varies linearly from x, to k3, kz/lg varies linearly from k3 to k;

K=ol =Pl +e2—0c), r3=(1—-a)(1+p)l+e2-0)]

Segment3:k; =0, ko/k=1x4=(14+p)[l+el—c)], (5)

where = Bu is the friction bending factor. The frictional mesh stiffnesses in segments 1 and 3 are reduced and
increased by f, respectively, due to the friction bending effect. The mesh stiffnesses of high contact ratio gears
(¢>2) can be treated in a similar way.

3.2. Dynamic model of gear pair with tooth friction

Referring to Fig. 1a, the dynamic normal forces N.; and friction forces f. ; act at the mesh positions A and B.
Elasticity of each tooth pair is captured by the variable mesh stiffnesses k;, in Fig. 1b. To visually
emphasize the parallel connection of stiffnesses for the individual tooth pairs, each elastic mesh element is
artificially shifted slightly in the x direction. The normal forces and mesh stiffnesses, however, are actually
collinear along the line of action. The gear translations are constrained by bearings with lateral stiffnesses k.
and k.. J;» are polar moments of inertia. 0, » are vibratory gear rotations. 7 and 7T are the input torque and
load, respectively. Dynamic transmission error u = r10; +r,0, is introduced to remove the rigid body mode.

The equations of motion can be derived by Newtonian or Lagrangian methods to obtain

z
D101 = —kn(u+y; =y — Y sgn()ikiu+ yy = y)li + T, (6)
i=1
. Z
20y = —k(u+ yy = y)r2 = 1Yy sen@)Fiki(u+ yy = y)(D = 1) + T, (7)
i=1
z
mik = —kaxi —py_ sgn(e)likix, ®)
i=1
mijy = —kyyy = kn(u+y; = y2), ©)
z
maks = —kaxy — Y sgn(e)likixa, (10)
i=1
majy = —kyyy — km(u+yy = y2). (11)

Multiplying Eq. (1) with r;/J; and Eq. (2) with r,/J, and summing them yields

4 T,

Joii + {H (nli/r1 + (1 =)D — I;)/r2]sgn(i)]ik; + km}(“ +yi—3)= " (12)
i=1
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Combining Egs. (8)—(11) and (12), the equations of motion in matrix form are

Mx + Cx + [L(x) + K(x)]x = F,
M = diag([Je, mi, mi,my,mo)),  Jo = J1J2/(r3]1 +11J2),
Xz[uaxlaylax27y2]Ta FZ[T]/VI,O,O,O,O]T,

L, O L, 0 —L, [ km 0 kem 0 —km ]
-L, 0 -L, 0 L, 0 Kk 0 0 0
L= 0 0 0 0 0 |, K=|%kn 0 kptka 0 —km |,
L, 0 L, 0 —L, 0 0 0 ko 0
L 0 0 0 0 0 | | —knm 0 —km 0 km+kp |
V4

Ly = p Y [nli/ri + (1 =)D — 1) /ralsgn(w)T ik,
i=1

z
Ly=u Z sgn(v)lik;,

i=1

v & 0; = Qri(tan @ ; — tan ¢, ),

Iy =sgn(u+y; —y, — g;) +sgn(u+ y; —y, — g, + B)],

V4
kow =S Tk, (13)
i=1

where L,, and L, include the contributions of tooth friction on rotations and off-line-of-action translations,
respectively; 7 = r%Jz/(rgJ \+10s); = r tan @1,; are moment arms of the friction force f; ; with respect to the
center of gear 1; D = (r;+ry)tan¢ is the length of the line of action; B is the gear backlash; the tooth
separation function I';e{1, 0, —1} determines the existence of drive-side contact (+ 1), contact loss (0) or
backside contact (—1); and g; is the tooth surface deviation, which is taken as zero in this study. The constant
matrix C is determined from a modal damping ratio { whose fluctuation has no significant impact on
parametric excitation [30]. In L,,, the time-varying mesh stiffness and friction bending effect are included
through k;, and the time-varying moment arm of the friction force is included through /. These are all
parametric excitations. L, only includes parametric excitations from mesh stiffness variation and friction
bending effect. sgn(v;) and I'; are the nonlinearities.

The power from the friction force is always negative for motion in any of the degrees of freedom because the
friction force always opposes the direction of sliding velocity. As a result, friction dissipates energy, as
expected. In addition, however, the friction force, moment of friction force, and friction bending effect are
time-varying, periodic parametric excitations that excite the system and can, under resonant conditions as
analyzed subsequently, pump energy into the system and lead to large vibration.

The governing equation (13) is a group of nonlinear, time-varying differential equations. Parametric
excitations are included in L. and K from the time-varying friction moment arms /; and mesh stiffnesses k;
modified by the friction bending effect.

Substitution of k& for k,, in K yields K. The eigenvalue problem for the linear time-invariant form of Eq. (13)
averaged over a mesh cycle is K¢, = w>2M¢, where f, = »,/(2n) are natural frequencies. The normalized
vibration modes are

¢n = [¢n1’0’ ¢n3’0’ ¢n5]Ts n=1,23,
¢4 = [O’ ¢n2’ 0’ 0’ O]T> ¢5 = [05 0; 05 ¢n4a O]Ta

where ¢, are elements of the nth vibration mode. Rotational modes (n = 1,2,3) have coupled motions of u, y,
and y,. Translational modes (n = 4,5) only have off-line-of-action translations x; and x,.

(14)
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To examine the parametric instabilities, we take I'; = 1 (contact loss occurs only after onset of large
vibration). Eq. (13) becomes a linear, time-varying model with periodic, piecewise linear parametric
excitations in a mesh period 7. The mesh stiffnesses and moment arms vary in each of three segments in a
period (Fig. 2). Combining Eqgs. (5) and (13), the time-varying elements of L and K are as follows.

For segment 1 (¢p<t<t; where ty = 0 and t; = yT)

ki =1k ke = (1= P1 +&(1 — Ok,
kr =0 =  L,=u(l- Pl +el — o)k, (15)
Iy = po+riQt L, =Lio+ Lt

For segment 2 (t;<t<t, where t, = (cty—1)T)

ki = 10k — (t — t1)w km = (k2 + K3)k,
ky =13k +(t—t)w = L, = ph(icy — 1) 4+ 2(t — t)uw, (16)
I =p+(t—t)rQ Ly =Log+(t—t1)Lyy +(t — 1)’ Las.

For segment 3 (1, <t<t3; where t; = T)

kl =0 km = (1 +ﬂ)[1 + 8(1 - C)]];
" o L= u(l+ Bl +e(l — o)l (17
l1 = py + (1 —1)r1 2 L, = L3y + (t — t2)Ls,.

where w = (ky—K3)/(t3—12), Q is the mesh frequency, L, , (segment index p = 0,1,2) are coefficients that
emerge from simplification of L,, (see Appendix A), and po;, are defined previously in Fig. 2b.

Substitution of Egs. (15)—(17) into Eq. (13) yields different matrices L and K for each segment. These
matrices, however, have the common form

L=1L,+(t—1,)Ly + (t — ,)’Le,
K=K, +(—t,)Kp + (¢t —1,)’K, for 0<t<T, (18)

where L, . result from substitution of L, + | , and L, into L. K, . result from substitution of k,, into K. L, .
and K, . are different for each segment due to variations of mesh stiffnesses and moment arms. For the
rectangular shape mesh stiffnesses used in this work, K, . = 0 for all segments, but that is not true for general
stiffness variations. Note L and K are periodic operators with period 7.
With substitution of Eq. (18), Eq. (13) is recast into homogeneous state-space form as
y=G(t)y for 0<t<T,
0 I

AT
- ) s G -
¥y =[x (—M—I(K+L) —M'C

) =G, + (t - tp)Gb + (t - t[?)2G(?a (19)

where G(t+ T) = G(¥).

4. Parametric instability
4.1. Calculation of the state transition matrix

According to Floquet-Liapunov theory [31], the fundamental matrix Il(z) comprised of a complete set of
fundamental solutions for Eq. (19) satisfies I1(7) = P(#)e"~0)Q, where P(¢) is a periodic function with period T,
Q is a complex constant matrix, and ¢, is the initial time. After one period T,

I(t+ T) = P(t + T)e™T—0Q = [1(£)e?7, (20)
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where Q7 = I (1))[1(zg + T) = ®(ty + T, 1y) is the state transition matrix or monodromy matrix. The
stability of fundamental solutions is determined by the eigenvalues A; of the state transition matrix: |1,/ <1
indicates stable solutions; |1,/ > 1 indicates unstable; and 4, = 1" for integer m means period-mT solutions.

As discussed above, the linear, time-varying model is expressed as three polynomial matrix forms associated
with the three segments of one period defined previously. The state transition matrix of the system is obtained
by the state transition matrices of the three segments

D(T,0) = D(t1,0)D(12, 11)D(T, 12), @3y
where ®(t,41,1,) = l'l’l(tp)l'l(tpﬂ). The state transition matrix for any segment with #,<7<t, is expanded
using Peano—Baker series [32,33] as

Iyt tp+1 Tl
D(tpr1, 1) =1+ G(tg — tp)dto + G(ty — lp)/ G(ty — tp)d1rd1y
Ip

ty t

tp+1 T1 T2
+ G(t) — 1,) / G(ty — 1,) / G(ts — t,)drsdrydry + - - (22)
Ip Ip Ip
Let %; = 1; — 1, such that,
tio1 ti_1—tp
|6 dn = [ GEME = Bt = B0 23)
ty 0

where 4, = t,,,—1t,. Evaluation of the integrals in Eq. (22) and the polynomial form of G gives a recursive
sequence for calculation of the state transition matrix as

D p(hy,0) = 1+ Ty (hy) + Toly) + -+ To(hy) + -
3
Ti = Ty = Gohy + Gih2/2 + Galt} /3,
i=1
2n+1
Tn = Z Tn,i I’l>2,

i=1
1
Tn,l = thGOTnfl,l 5
hP

T, = o (GoTy—12 + 1,G1Ty_11),

1 z,
- aivel L. f= —
T, = . 1;:0 hp GT, 1,—j, i=34,..2n—1,

2

h
Tn,2n - 2 (GlTnfl,anl + hpG2T1171,2n72)a
3n—1

1
Tn72n+l = % h;G2T11—1,2n—1 5 (24)

where T, denotes the sequence of terms in Eq. (22).

For comparison, a numerical integration method [34-36] is applied. The time span 4, is discretized into m
divisions, where 4; is the time step of division i (t;<¢<t;+) and C; is the mean value of G over a mesh cycle.
Thus,

®;(hy,0) = [ [ + 4:Ci + HAC) + - + HACH + - ]

i=1

til +t [3 —
i+1 lGl + i+1

il 25)
2 34, O (

1
CizA—/(G0+G]T+G2T2)dT=GO+
iJa

The numerical integration method applies for arbitrary functions G. The recursive process applies only to G
having polynomial forms.
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To validate the recursive process and compare performance against numerical integration, an example
system 1is selected as

X4+[a@t—nT)+Dlx=0, nT<t<@m+1T. (26)

The stiffness term is a periodic sawtooth function. The fundamental and state transition matrices are [31]

() < vat+bJ1/3(a) «/at+bJ,1/3(a) B 2(a1+b)3/2 -
( ) o (Cll + b)J72/3((7) —(al + b)J2/3(O') ’ 7= 3a ’ ( )
®5(h,,0) = I O)TI(h,). (28)

The relative error of the recursive process with respect to the analytical solution is examined in Fig. 4a.
There is a critical value n. for a given 4, above which the error is insensitive to n and the error is extremely
small. The errors in the integration method shown in Fig. 4b are higher than for the recursive process for
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Fig. 4. (a) Comparison of Peano—Baker series solution with analytical solution. (b) Comparison of the integration method with analytical

solution (¢ =—-1,b=—-1). —%—h=4 —N—h=2,—6—h=1,— A— h=05 —h=0.25.
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comparable computation. Computation for the recursive process is slightly less than the integration method
given n = 20, m = 200 and A, = 0.5.

The recursive and numerical integration methods use Peano—Baker and exponential series expansions,
respectively. Both have truncation errors. The truncation error of exponential series is smaller than Peano—Baker
series for the same number of terms. The integration method, however, has additional discretization error. On the
other hand, the computational demands of the recursive process increase significantly with the number of terms.
In this study, the recursive process is more efficient than the integration method because a smaller number of
terms provides the required accuracy. Overall, the recursive process has better accuracy and requires less
computation than numerical integration for systems expanded as polynomial forms.

4.2. Perturbation approximation

This study only considers small ratios of mesh stiffness variation to mean stiffness (¢ < 1), small damping
({ < 1) and small coefficient of friction (< 1). The nonlinear, time-varying terms in Eq. (13) for gear pairs with
¢<2 are linearized in these quantities as

km=ki+hky=k+eK = K=k +k —Fk)/e,
L, = ulky — ki) = eL, = L, = glk> — k1),
Ly = s% {kalnrals + r1(1 = n)(D — 1)) — ka[qraly + r(1 = )(D — 1))} = &L, (29)

where g = u/e denotes the ratio of friction to mesh stiffness variation. K, I:M, L and g are O(1). These time-
varying functions are expanded in Fourier series as

o0 o0 o0
L=y Z A pee, L,=g Z 1% +cc, K= Z 0,6 +cc., (30)
s=1 s=1

s=1

where A, y;, and @, are known complex Fourier amplitudes. The symbol c.c. represents the complex conjugate
of preceding terms.

The associated operators are L = ¢L and K = K + ¢K, where L and K are obtained from substitution of L,,,
L, and k,, into L and K. Let ¢ = [¢,] be the modal matrix from Eq. (14). Applying the modal transformation
x = ¢u, Eq. (13) is recast into modal coordinates as

5
iy + 26c0,t + gty + &Y (L, + ¢y K, =0, n=1,2,3,4,5, 31)

r=1
where ¢ = (/e = O(1). Using Eq. (14), (f)Zﬂ(]f)r and qb:f(qb, are
0 if r=4,
¢Zf_‘¢r - ! D,L if n,r<4,
D, L, ifr<4andn=4,
0 if r=4 or r<4and n=4,

.
Ko, = .
ou K, {En,K if n,r<4,

Dnr = ¢nl(¢rl + (/51‘3 - (Z)rS)n
Ep = (1 + 3 — Gps)(Pp1 + by3 — by5), (32)

where D, € R is asymmetric and E,, = E,, € R is symmetric. E,, is the product of the mesh deflections in
modes n and r. D, is the product of rotational transmission error in mode n and mesh deflection in mode r.
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Substitution of Eq. (32) into Eq. (31) yields

3
il + 2econily + wptty + &Y (DL + EpKyu, =0, n=1,2,3, (33)

r=1

3
i, + 2ecwy,tt, + wﬁun — SZD,"Z#L{, =0, n=4,>:. (34)

r=1

Observing the upper limit of the sum in Eq. (33), the rotation modes 1, 2 and 3 are coupled together in
Eq. (33) through time-varying friction moments and mesh stiffness. Strong interactions between these modes
may lead to combination instabilities. These rotation modes are decoupled from the translation modes 4 and 5
in Eq. (33). The translation modes, however, are impacted by rotation modes in Eq. (34), although no
coupling exists between the two translation modes.

Applying the method of multiple scales, the solutions of Eqgs. (33) and (34) are expressed as

un :un,()(l,f)_i_gun’]([,f)‘i_"' n= 1’2’37475’ (35)
where t = . Substituting Eq. (35) into Egs. (33) and (34) and separating terms with the same power in ¢ yields
fino + Opttno =0, n=1,2,3,4,5, (36)
i 4 @21, = 2Pt o, Otng ZS:(D L4 EnR)urg, n=1,23 (37)
n,l nUn,l = oot CWp ot £ nr nr r,05 = 1,49,
. o%u ou, 3 N
ity + w’%un’l -2 arg,to — 2w, a&;,o + ; Dan,uur,Oa n=4,5. (38)

The general solutions of Eq. (36) are
Uyo = Ay(0)e ' +cc., n=1,273,4,5. (39)
Substituting Egs. (30) and (39) into Eq. (37) yields

iw,t iw,t

. . 0A .
iy + oM, = — 2iw,e a—l_" — 2cp(iw,)Ane

o
> (DwgAs+ En@)[A4, ) + 4,609 4 ce, n=1,2,3, (40)

3
=1 s=1

7

where an overbar means the complex conjugate.

By letting sQ = w,+w,+ &0 (p, ¢<3), where ¢ is a detuning parameter, two-mode (p#¢) combination
instabilities or single-mode (p = ¢) instabilities of rotation modes are examined. Elimination of secular terms
leading to unbounded response in Eq. (40) requires

.04, . o
2iw, 6—1_” + 2ican Ay + (Dpgg Ay + Epg©) A" = 0, (41)

. 04 . o
2iw, a—: + 2ica Ay + (Dgpg A + Egy©,) A, = 0. (42)
The solutions of Egs. (41) and (42) are

A, = ape“, Ay = aqe(;}w)r, (43)
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where a, and a, are complex constants, and 4 are roots of the characteristic equation obtained from Eqgs. (41)
and (42) such that

A=z{—c(w, + wy) +ic £ [gz(a)p - wq)2 -+ 2ico(w, — wy) + T]l/z},

| =

1 - -
Y= 7(qug/1x + qu@s)(qugAs + Eqp@s)- (44)
WpWyg
The real parts of A determine the stability of the solutions. Note ¥ is complex in general.
Combination instabilities of the difference type are examined by letting sQ = w,—w, + &0 (w, > w,) where p,
¢<3. The 1 analogous to Eq. (44) are

A=z{—c(w, + wy) +ic £ [gz((up — a)q)2 -+ 2ico(w, — wy) — l1!’]1/2}. (45)

| =

The interaction between rotation modes 1, 2 and 3 in Eq. (14) and translation modes 4 and 5 is examined by
letting sQ = w,+ w,+¢0 (p<4, ¢=4). The solvability conditions for Eq. (40) are

04y .
Ziey 5 F + 2cwyd, =0, (46)

04 -
2iw, 6—: + 2igw§Aq — gDy Ape” = 0. 47)

The nontrivial solutions of Egs. (46) and (47) are
Ap — ape—igw,,t Aq — aqei(;wp-Hr)r' (48)

These solutions are always bounded, so there are no combination instabilities between a rotation mode and
a translation mode. The same is true for combination instabilities between two translation modes, including
for p = ¢g. As a result, the following results address interactions between rotation modes 1, 2 and 3.

5. Results and discussion

A single-mesh gear pair with the nominal parameters & = 1.95 x 10® N/m, . =0.6, y=0.28, ¢ = 1.5,
{=10.001, u =0.1 and p = 0.5u is examined from this point, where u = 0.1 is consistent with past studies on
gear dynamics [6,16,17]. The dimensionless natural frequencies of the rotation modes are f; = 1.55, /> = 2.09
and f3 = 5.70. The natural frequencies of the translation modes are f; = 1.85 and f5 = 2.34.

5.1. Parametric instability from variable mesh stiffness

Without friction (u = g = 0), the only parametric excitation is from the mesh stiffness. From Egs. (44) and
(45) in the absence of damping ({ = 0),

1
i:i(ioﬂ:v?’—az) for sQ = w, + w, + ¢o,

1
i:i(io:t«/—'l’—az) for sQ = w, — w, + ¢o,
¥ = E2 |0,*/(w,m,)>0. (49)

Pq
The response for mesh frequencies near sum type instability regions is bounded (Re(1) <0) when 62> ¥ and
unbounded (Re(1)>0) when o< ¥. Thus, the instability boundaries are sQ = wp + wg £ (| EpgOsl/ JOp0g).

From Eq. (45), difference type instabilities do not occur because Re(4) = 0 for them.
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The primary (s = 1) instability intervals for single-mode and sum type instabilities are shown in Fig. 5 for
perturbation analysis and the recursive process. These methods agree well even up to ¢ = 0.3. The largest
parametric instability region occurs when mesh frequency is in the boundary of Q = 2m;+¢|E3304|/w3 because
of the maximum mesh strain energy in mode 3, i.e., E33 is large. The two-mode instabilities p = 1, ¢ = 3 and
p = 2, ¢ = 3 have much smaller instability regions because |E|3| <|E33| and | E»s| < |E33/. With fixed ¢ = 0.1, the
instability interval for primary single-mode instability is from f,, = 11.2 to 11.6, where f,, = Q/2x. Fig. 6 shows
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Fig. 5. Instability boundaries for changing dimensionless mesh stiffness variation ¢ and u =0, 0 =0.6, f =0, c= 1.5, { =0, y=0.28
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Fig. 6. Dynamic response for dimensionless mesh frequencies near the instability boundaries for ¢ = 0.1 and other parameters as in Fig. 5:

(@) fin=11.2; (b) f = 11.6; (¢) fi = 11.1: (d) fin

Dimensionless time t

11.7; (e) f,, = 7.25 and (f) f,, = 7.79 (all f,, are dimensionless).
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linear dynamic responses excited by six mesh frequencies near the instability interval obtained by numerical
integration. The amplitudes increase exponentially for £, = 11.2 and 11.6 in Figs. 6a and b. On the other hand,
Figs. 6¢c and d show stable amplitudes for f,, = 11.1 and 11.7. The unstable responses at f,, = 7.25 and 7.79 for
sum type instabilities are shown in Figs. 6e and f, respectively. Therefore, the instability boundary predictions
by the recursive process and perturbation approximation agree well with numerical simulation.

5.2. Effect of tooth friction on parametric instability

With friction and damping, the real parts of A in Eqs. (44) and (45) are
1 2
Re(%) =3 {—g(wp +w,) £ %[(AZ +B)' ¢ A]l/z},

gz(a),, — wq)2 — 02+ ¥r for sQ= o, + w, + &0,
A=
P(wp — wy)* — > — Pr for sQ =w, — v, + ¢7,
{ 2co(w, —wg) + ¥ for sQ = w, + w, + €0,
= (50)

2co(w, —wy) — ¥ for sQ = w, — w, + 0.

The stability boundaries (Re(1) = 0) are determined as (4% + Bz)l/ ‘4 A= 2¢%(wp + co,,)z. Manipulating
this yields the boundaries of combination instability with friction as

Q= wy +w, + [(a),, —wy)¥; £ (v, + wq)\/‘l’% + 16C2wpa)q(‘PR — 4C2w,,a),,)} ,

1
8L,y

1 2 2
sQ=wy, —w,+ m [(wq — )V £ (v, + wq)\/Y’§ + 1607 w,04(—=Y R — 4 a)pwq)] ,

1 -
¥Yr =Re(¥) = P [82E12,,1|@s|2 + 12Dy Dy As|* + e Epy(Dpg + Dgp)Re(4,0,)],
yad’]
& —
W = Im(¥) = E,y(Dyy — Dyp)Im(4,6,), (51)
Wpyg

where w,>w, and O, is the complex conjugate of @,.

The effects of mesh stiffness variations and friction bending effect are incorporated in ¢|@,|. The effects of
friction moments are included in u|A,|. The difference type instabilities, which are absent for u = 0, arise when
u#0. Each instability region occurs as a backbone (e.g., (0, — 0q)¥1/8{w,w, for sum type instability) and a
symmetric deviation (the terms after + in Eq. (51)). The backbones are linear functions of u and & whose
slopes are determined by modal properties, mesh stiffness variations and sliding friction. For the same two
modes and the same s, the backbone slopes for the sum and difference type instabilities have equal magnitude
and opposite sign. The backbone slopes for the sum type are negative; they are positive for the difference type.
The deviations can be approximated as linear functions of u and ¢ with Taylor expansion of the square roots.

Fig. 7 shows the instability boundaries varying with x4 while the friction bending f = 0. Mesh frequency f,,
varies from 1.7 to 12 covering most combination and single-mode instabilities. The perturbation solutions
agree well with numerical solutions. For a combination instability to occur, the corresponding quantity inside
the square root of Eq. (51) (call it 4) must be positive. This quantity 4, which also governs the width of the
instability region, depends on strength of parametric excitation, friction, modal mesh strain energy (as
captured by E,, and D,,), natural frequency and damping. For fixed system parameters, the modal mesh
strain energy dictates existence and width of a possible instability. For instance, sum type instability for modes
1, 2 does not occur because 4 = —1.6 x 107> <0. Sum type instabilities involving modes 1, 3 and modes 2, 3
are present because 4 = 0.0014 and 0.0009, respectively, a result of the larger modal mesh strain energy in
mode 3. The instability intervals for modes 1, 3 are larger than for modes 2, 3 for the same type of instability
(sum or difference) because mode 1 has stronger mesh strain energy than mode 2. Note that in the absence of
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(*: recursive process; : perturbation): (a) f,, from 1.7 to 4.5 and (b) f,, from 5 to 12.

damping 4>0 and instability always occurs. In essence, there is a critical mesh strain energy required to
overcome the damping and create instability.

The sum type instability intervals (i.e., deviations) are larger than the difference type for the same two
modes, as proved in Appendix B. The sum type instability occurs even when p = 0 and is more sensitive to u
and ¢ than the difference type. The widths of the two-mode instability boundaries (sum and difference types)
increase almost linearly with p.

For single-mode instabilities (p = ¢), ¥; = 0 and the instability boundaries simplify to

$Q = 20, £ /ey O, + uDpp A, [ — 400}, (52)

The backbones vanish, in contrast to the two-mode instabilities. The instability intervals depend on &
(mesh stiffness variation and friction bending) and uA; (friction moments). In practice, ¢>pu, E,,>D,,, and
|@, > |A,| due to the moment arm of friction /; being less than the base radius. Thus, |¢E,,0, > |uD,,A,| and
the single-mode instabilities are sensitive to the friction bending effect and mesh stiffness variations while less
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sensitive to friction moments as evident in Fig. 7. Because |E33|> | E11|>|E|, primary instabilities of modes 1
and 3 emerge in Fig. 7, and the interval of mode 3 is much larger than that of mode 1. Higher order
instabilities (s = 1,2,...,6) also exist for mode 3. The intervals for odd order (s = 1,3,5) are larger than for
even order (s = 2,4,6) because, for rectangular wave mesh stiffness, odd harmonics have higher magnitudes
than even harmonics (Fig. 8).

5.3. Effect of friction bending on parametric instability

The effects of friction bending ratio § on the mesh stiffness harmonics @, are shown in Fig. 8. Given ¢ = 0.3,
c=1.5, 4 =0.6 and y = 0.26, the odd order harmonics are not sensitive to  while the even order harmonics
are. As a result, the instability intervals with odd s are insensitive to  while those with even s are sensitive to .
As illustrated in Fig. 9, the intervals with s = 1,3,5 are almost independent of . The instabilities with s = 2, 4,
6, such as, sf,,~2f; (s = 2, 4, 6) and sf,,~f3—f1 (s = 2), however, change with 5. The single-mode instabilities
for p = g = 3 exist even for s = 2, 4, 6 because the third mode has the maximum mesh strain energy even
though the |@, 46| are much smaller than |©,|. For p = g = 3, the single-mode instability intervals with s = 2,
4, 6 are increased by the bending ratio f5, while the intervals for s = 4, 6 are much smaller than for s = 2 (note
different scales in two graphs) because |04 <|B@g| <|O,| in Fig. 8.

5.4. Effect of contact ratio on parametric instability

The contact ratio ¢ affects both A; and @ (i.e., the harmonics of parametric excitation included in ¥ of
Eq. (51)), so the impact of contact ratio on instability boundaries changes with tooth friction. Fig. 10 shows
the effect of contact ratio on single-mode and two-mode sum type instabilities with tooth friction and bending
effect. The sum type instability boundaries without tooth friction are

(wp + wy)

VPIE, B, — 4l 002 (53)
2,04

Q=w,+w,+ 0y

where the harmonics of frictionless mesh stiffness are

o, = SE sin sn(c — 1)[cos sn(c — 1 + 2y) +isin su(c — 1 + 2y)]. (54)
0
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Without tooth friction, the instability boundaries for varying contact ratio have sinusoidal profiles
symmetric about ¢ = 1.5 as |@,| = k| sin sn(c — 1)|/(sm), and the number of waves for each profile depends
on s.

The instability boundaries with friction shown in Fig. 10 are calculated by the perturbation and numerical
recursive methods. The boundaries do not have sinusoidal profiles. The two-mode instabilities are determined
by the complicated functions of ¥ and ¥;in Eq. (51) that are affected by the contact ratio ¢, friction moment
u, and friction bending . The boundaries of two-mode instabilities are sensitive to y, and the boundaries of
single-mode instabilities for even s are sensitive to . The sum type instability boundaries shown in Fig. 10 are
no longer symmetric about ¢ = 1.5. The contact ratio having maximum boundary width is shifted to lower ¢
due to tooth friction. The instability intervals with tooth friction are greater than those without friction
because of the increased excitation. The secondary instability (s = 2) at f3 occurs even for ¢ = 1 due to the
sensitivity to friction bending. The influence of contact ratio on the primary instability at 2f; is minimal
because that instability is insensitive to friction moment and bending effect as shown previously. The profile of
the primary instability in Fig. 10 is almost a symmetric sinusoidal profile even with friction.
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Note that c—1+7y<1 is required according to Fig. 2. The analytical and numerical results for ¢c=2—y = 1.85
with the selected y = 0.15 have no physical meaning.

5.5. Effect of modal damping on parametric instability

From Egs. (51) and (52), the instability boundaries decrease with an increase in modal damping. Different
types of instabilities have different critical damping where the unstable interval vanishes. Fig. 11 shows the
influence of damping on single-mode and two-mode combination instabilities. The perturbation and
numerical solutions agree well. The primary single-mode instability has the biggest critical damping due to the
strongest mesh strain energy in mode 3. The other instabilities decrease more rapidly than for the primary
single-mode. The f] + /3 combination instability has greater critical modal damping compared to the f5>+f3
combination due to the higher mesh strain energy of mode 1 than mode 2. The critical modal damping
depends on tooth friction, mesh stiffness variation and contact ratio.

5.6. Influence of tooth friction on dynamic response

The parameters of two practical gears listed in Table 1 are used to generate finite element gear models. For
comparison purposes, the realistic mesh stiffness variations over a mesh cycle calculated from the finite
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perturbation;

element model are used as the frictionless mesh stiffness in the analytical model. The mesh parameters are
k=2988N/m, T; =100Nm, u=0.1, c=14 and { =0.02. The friction bending effect is inherently
included in the finite element analysis. The bending factor f§ used in the analytical model is estimated from
Eq. (4) where the deflection and load are calculated from finite element static analysis.

The parametric instabilities for two-mode and single-mode combinations result in exponentially growing
dynamic response, which eventually triggers nonlinear contact loss. The nonlinearity suppresses the growth of
the amplitude and usually yields a steady periodic response. To study the sensitivity of nonlinear response on
tooth friction and validate the proposed analytical model, numerical simulations of the nonlinear analytical
model in Eq. (13) and the finite element model are compared in Fig. 12a. Fig. 12b shows the spectral details.
Decreasing speed sweep analyses are conducted to cover the frequency range that includes the fundamental
resonance of rotational mode 1 at f;{ = 1835Hz and higher harmonic resonances of rotational mode 3 at
f3 = 6924 Hz. The root-mean-square values of the dynamic transmission error u are calculated by

1 nT 1/2
= o [ -] 59)

where # is the mean value of u. The analytical models with and without friction bending effect agree well with
the finite element model in Fig. 12a for the resonances at 1731 and 1835 Hz where the fourth harmonic excites
mode 3 (Fig. 12b) and the first harmonic excites mode 1, respectively. Tooth friction has negligible effect on
these two single-mode resonances and in the off-resonant frequency ranges.

The finite element results reveal that tooth friction significantly excites the resonance at 2308 Hz where the
third harmonic (s = 3) excites mode 3 as shown in Fig. 12b. The analytical model with friction bending effect
shows a similar strong influence of tooth friction on this resonance. The analytical result for g = 0.1 and
B = 0, which ignores the friction bending effect, cannot capture the strong impact of tooth friction on this
resonance. This implies that the friction bending effect plays a key role in exciting this higher harmonic
resonance. These findings confirm the conclusions from the stability analysis.

6. Conclusions

A translational-rotational model with parametric excitations from variable mesh stiffness, tooth sliding
friction moments, and a heretofore unexamined friction bending effect is established for a single-mesh gear
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Fig. 12. Speed sweep analysis for o = 0.6, y =0.28, ¢ = 1.4, ¢ = 0.28, { = 0.02: (a) root-mean-square comparisons (M: finite element
w=0; O: analytical u = 0; @: finite element u = 0.1; O: analytical u = 0.1, = 0.05; *: analytical u = 0.1, f = 0) and (b) finite element
Campbell diagram u = 0.1.

pair. A numerical recursive method based on Floquet theory and a perturbation analysis examines the
associated parametric instabilities and show strong agreement. The analytical expressions for instability
boundaries reveal how key parameters impact the instabilities. The nonlinear responses from the analytical
model and a finite element benchmark also agree even when contact loss occurs.

1. Combination instabilities between a rotation mode and a translation mode or two translation modes
cannot occur. Sum type and single-mode instabilities can occur for both frictional and frictionless
conditions. Difference type instabilities occur only when friction is present.

2. Two-mode combination instabilities are sensitive to the friction moment and bending effect. Single-mode
instabilities are insensitive to the friction moment but sensitive to the friction bending effect. The instability
interval widths depend nearly linearly on mesh stiffness variations.



G. Liu, R.G. Parker | Journal of Sound and Vibration 320 (2009) 1039-1063 1061

3. For the same type of instabilities, the instability intervals for different modes depend on the total
mesh strain energy of the mode or the modes in combination. The mesh strain energy needs to be over a
critical value to cause the instability. The sum type instability intervals are larger than for the difference
type.

4. The effects of contact ratio on the instability intervals of two-mode combination and single-mode
instabilities are altered significantly by the friction moments and the friction bending effect, respectively.
The tooth friction destroys symmetry of the instability boundaries for varying contact ratio. The friction
bending can cause instability even for integer contact ratios.

5. The proposed analytical model agrees with a finite element benchmark for nonlinear response due to
parametric instabilities, while the model without considering friction bending fails to predict the strong
influence of tooth friction on certain parametric instabilities. The nonlinear dynamic analyses confirm that
the friction bending effect can significantly alter the vibration.

Appendix A. Expansion of terms in Eq. (18)

- 1—n)(D — - —ri(l =
;mlk"p‘)”J“”( n( Po)’ Li1 = — k@™ ri( n)’ (A1)

rira r

Lig=-—

i
Lo = r’]‘—rz{na — (D — py + 271r1) — 12(D — p)]+ ranlics(py — 27r1) — 1211,

kQ 2uw
Ly = %[Vﬂl +ri(1 —n)](c3 — x2) +rfl—rz[”2'7(P1 —nry) +ri(1 =m)(D — p; + nry)],

2uw
r

Ly, = [(1 = n)ry —nra], (A.2)

- 1—n(D - oy —ri(1—
L3,0=m4k'7”2r2+"( D = py) Ly) = pcae ™ nd—n

(A.3)
ryr n

Appendix B. Proof of instability deviation relation

Examination of Eq. (51) shows that proving the deviation of a sum type instability is larger than for the
difference type is achieved by showing ¥x=>0. To begin, consider the first component equation of the
eigenvalue problem K¢, = wZMd)p, which gives the following relations between the modal deflections:

Jewlz, —k Jea)lz, 5
¢p3 - ¢p5 = T¢pl = ¢pl(¢p] + ¢p3 - ¢p5) = T¢pl >0. (Bl)
From Egs. (14), (32) and (B.1),
Jew,my 2
ququ = d)pl d)ql((ppl + ¢p3 - ¢p5)(¢ql + ¢q3 - d)qS) = ( lz d)pld)ql) >0. (B2)

This implies D,, and D, have the same sign. The following is for positive D, and D
modification for negative values. From (D,,~D,,)* >0,

4p» With straightforward

| Doy + Dap| 224/ Dpy Dy (B.3)
The Fourier coefficients in Eq. (30) are expressed in real and imaginary parts as

Ay = AR + 14y

O, = Or +i6; } = Re(4,0,) = AgOr + 4,0, (B.4)
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From Egs. (51), (B.3) and (B.4),

1
Yr= (Yr1 + Pro), (B.5)
pDq
2
Wi =& E; 0% + 1 DpgDyp Ay, + 16Epg(Dpg + Dyp) ArOr = (6EpgOr + 117/ DpgDypAr)” 20,
2
YRy =& E,,07 + 18 DpgDyp A7 + pEEpy(Dyy + Dyp)A10 1= (¢Epg O + 11/ DpgDyp Ar)” 20, (B.6)

Combination of Egs. (B.5) and (B.6) yields ¥z >0.
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