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Abstract

This work studies the influences of tooth friction on parametric instabilities and dynamic response of a single-mesh gear

pair. A mechanism whereby tooth friction causes gear tooth bending is shown to significantly impact the dynamic

response. A dynamic translational–rotational model is developed to consider this mechanism together with the other

contributions of tooth friction and mesh stiffness fluctuation. An iterative integration method to analyze parametric

instabilities is proposed and compared with an established numerical method. Perturbation analysis is conducted to find

approximate solutions that predict and explain the numerical parametric instabilities. The effects of time-varying friction

moments about the gear centers and friction-induced tooth bending are critical to parametric instabilities and dynamic

response. The impacts of friction coefficient, bending effect, contact ratio, and modal damping on the stability boundaries

are revealed. Finally, the friction bending effect on the nonlinear dynamic response is examined and validated by finite

element results.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the various treatments of the gear mesh characteristics in the numerous mathematical gear models found
in the literature [1–3], most models neglect the dynamic contribution of tooth friction compared with mesh
forces normal to the tooth surface. Parametric excitation from variable mesh stiffness and geometric
deviations of tooth surfaces are usually treated as the dominant sources of gear vibration [4,5]. Recently, tooth
friction was demonstrated as an important factor in gear dynamics. Velex and Cahouet [6] analyze tooth
friction in spur and helical gear dynamics. The comparison between simulated and measured bearing forces
reveals the potentially significant contribution of tooth friction to gear vibration. The importance of tooth
friction to structure-borne vibration of helical gear systems and to vibration reduction of gears with minimal
static transmission error is discussed in Refs. [7,8]. Vaishya and Houser [9] demonstrate the powerful influence
of tooth friction on the vibro-acoustic performance of gears.

Due to the involute shape of gear teeth, the mesh contact undergoes rolling and sliding, resulting in sliding
friction force normal to the line of action. Variable friction coefficients are applied in studies of gear wear and
power efficiency. The coefficient of friction is a function of sliding velocity, surface roughness, lubrication film,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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contact load, temperature, etc. Theoretical friction coefficients are derived from elasto-hydrodynamic
lubrication and tribology theory [10–12]. The experimental works in Refs. [6,9,13], however, show that a
constant friction coefficient is acceptable for dynamic analysis. The measured dynamic friction loads show
friction coefficients of approximately 0.04–0.06 [13]. Benedict and Kelley’s empirical equation shows the
coefficient of friction varies between 0.03 and 0.1 [14]. The value of 0.1 (not typical condition of well-
lubricated gears) is commonly used in gear dynamics [6,15–18].

The effects of tooth friction include moments about the gear centers from friction forces perpendicular to
the line of action (affecting gear rotations), excitation of off-line-of-action gear translations, nonlinear
dependence of friction on the sliding velocity, and energy dissipation. Iida et al. [19] examine time-varying
tooth friction using a simplified dynamic model with friction as excitation and damping. Hochmann [20]
focuses on the periodic external excitation from tooth friction while assuming constant mesh stiffness. Gunda
and Singh [18] and Vaishya and Singh [16,17] present dynamic rotational models. The sliding mechanism is
formulated based on dynamic mesh force, and the friction term appears with time-varying parameters.
Parametric excitation also results from variable mesh stiffness that causes instability and severe vibrations at
certain mesh frequencies [5,21–25]. Vaishya and Singh [16] apply Floquet theory to their dynamic rotational
model to study parametric instabilities from variable mesh stiffness and tooth friction.

Previous works focus on models having only rotational degrees of freedom, where the only contributions
from tooth friction are moments about the gear centers. Translational–rotational models are studied recently
[26]. Friction force, however, also affects gear tooth bending [27], which has not been previously examined for
gear dynamics. This paper develops and analyzes a dynamic translational–rotational model admitting this
additional contribution of tooth friction (bending effect) as well as gear translations. The model includes this
friction bending effect combined with time-varying friction force orthogonal to the line of action, time-varying
mesh stiffness, and contact loss nonlinearity. The friction bending effect is shown to be important for
instability and dynamic response of gear mesh deflections. Parametric instabilities and quasi-periodic response
due to friction and modal interactions are studied. An iterative numerical method based on Floquet–Liapunov
theory and Peano–Baker series is proposed for stability analysis. This method is evaluated against a well-
known numerical method. Furthermore, perturbation analysis is conducted to find approximate solutions that
predict and explain the numerical parametric instabilities. The predicted instabilities occur in practical gears as
resonance-like vibration near the mesh frequency and particular multiples of mesh frequency that are close to
natural frequencies in combination. The large response triggers tooth separation nonlinearity that bounds the
vibration. The effects of time-varying friction moment and friction bending effect are found to be critical for
combination instabilities and certain single-mode instabilities. The impacts of friction coefficient, bending
effect, contact ratio, and modal damping on stability boundaries are revealed. Finally, the bending effect of
tooth friction on nonlinear dynamic response is discussed and validated by finite element results.

2. Tooth bending effect of friction force

The elastic deflection of a pair of loaded gear teeth consists of deflection of the tooth as a cantilever beam,
gear body flexibility, and Hertzian contact compression. The normal contact force and tangential friction
force both contribute to tooth bending. Tooth bending deflection for mesh force along the line of action is
studied as a non-uniform cantilever beam in Ref. [27]. Extending that derivation to include friction
perpendicular to the line of action gives the total deflection of a pair of loaded gear teeth as

W ¼
gc cos jc � gs sin jc

EI
þ

1

kr

� �
N1;i þ

gc sin jc � gs cos jc

EI
þ

1

kr

� �
f 1;i, (1)

where N1,i and f1,i are contact and friction forces of tooth pair i, respectively; jc is the pressure angle at the
current mesh position; EI denotes tooth bending rigidity; gc and gs are tooth geometric factors based on
parameters defined in Ref. [27]; and kr is the effective rotational stiffness of the gear flank as reduced from Lee
et al. [27], which is assumed the same for both forces. Although the compliance for N1,i is softer than that for
f1,i, they are of the same order.

To demonstrate the significance of the friction bending effect, a pilot study static analysis is conducted on a
pair of spur gears in Fig. 1a. Gear 1 is loaded with torque T1 and gear 2 is fixed. The equilibrium conditions
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Fig. 1. (a) Mesh forces A and B are contact positions of the two tooth pairs. (b) Dynamic model of two gears with tooth friction.
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yield the resultant contact and friction forces

N1 ¼
Xz

i¼1

N1;i ¼
T1

r1 �
Pz

i¼1sgnðviÞmiliai

; f 1 ¼
Xz

i¼1

f 1;i ¼ �N1

Xz

i¼1

sgnðviÞmiai, (2)
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where r1,2 denotes gear base radii; z is the number of tooth pairs in contact; vi, mi and li are sliding velocities,
friction coefficients and friction force moment arms (Fig. 1b), respectively; and ai ¼ N1,i/N1 are load sharing
factors between the z tooth pairs. The contact force of tooth pair i is aiN1 and the friction force is miaiN1

according to Coulomb friction.
The friction moments about the gear centers depend on the position of the contact points. The moment

arms of friction forces f1,i in Fig. 1a are shown in Fig. 2a. The difference between the two moment arms is a
base pitch and r0 ¼ r1 tanj, r1 ¼ r0–2pgr1, and r2 ¼ r0+2p(c�1)r1, where j is the pressure angle at the pitch
point and c is the contact ratio. g denotes the position in a mesh period where double-tooth contact starts.

Contact force variations results from the friction force. These variations relative to the frictionless condition

are

DN1 ¼ N1 �
T1

r1
¼ N1

Xz

i¼1

sgnðviÞmiaili=r1; Df 1 ¼ �N1

Xz

i¼1

sgnðviÞmiai, (3)
Fig. 2. (a) Moment arms of two friction forces. (b) Mesh stiffnesses (normalized by k̄) of gear tooth pairs including friction bending effect

( the first tooth pair; - - the second tooth pair).



ARTICLE IN PRESS
G. Liu, R.G. Parker / Journal of Sound and Vibration 320 (2009) 1039–1063 1043
where N1 is greater than the nominal contact force T1/r1 when contact occurs in the approach region
(sgn(vi) ¼ 1) where the sliding makes gear 1 approach gear 2. On the other hand, N1 is smaller than the
nominal force when contact occurs in the recess region (sgn(vi) ¼ �1) where the sliding acts to separate gear 1
from gear 2. In practice, li/r1o1 implying |DN1|o|Df1|. From Eqs. (1) and (3), mesh deflection variation due to
tooth friction is DW ¼ DN1/km+Df1/kfb, where km and kfb are the mesh stiffness and friction bending stiffness,
respectively, which are reciprocals of the compliances in Eq. (1). DW includes the impact of friction moments
and the bending effect of friction forces. Note that the traditional analytical mesh deflection variation is
DW ¼ DN1/km, which only considers the moments of friction forces.

A specialized finite element program is used to benchmark the analytical model. The finite element model
uses detailed contact analysis including Coulomb friction and careful tracking of the tooth contact kinematics.
Its main features and validation against nonlinear gear vibration experiments are outlined in Refs. [28,29].

Variations of mesh deflection of the gear pair in Table 1 and m1 ¼ m2 ¼ m ¼ 0.1, obtained by finite element
and analytical predictions are shown in Fig. 3. Significant differences emerge from the friction bending effect.
For a contact ratio less than two, there is a pair of gear teeth engaged from mesh period 0 (pitch point) to 0.84.
Another gear pair starts contact from 0.1 to 1. For single-tooth contact in the recess region (mesh period
A(0, 0.1]), DN1 ¼ �m1l1N1/r1o0 such that DWE�2 mm when the friction bending effect is neglected. The
bending effect of friction force Df1 ¼ m1N140, however, increases the mesh deflection by about 0.5 mm.
Combining the effects of friction force moment and bending, DWE�1.5 mm. The mesh deflection variation
from the friction bending effect is 25% of the variation from the friction moment alone. For single-tooth
Table 1

Parameters of example gears

Pinion Gear

Number of teeth 38 55

Modulus (mm) 2.54 2.54

Base radius (mm) 45.35 65.64

Inertias Ii (kgm
2) 2.62e�3 3.27e�3

Mesh parameters k̄ ¼ 2:98e8N=m, T1 ¼ 100Nm, c ¼ 1.4

a ¼ 0.6, g ¼ 0.28
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Fig. 3. Mesh deflection variation comparisons for gears in Table 1 and T1 ¼ 100Nm (—: finite element m ¼ 0.1; - - : analytical result with

friction bending and m ¼ 0.1; y: analytical result without friction bending and m ¼ 0.1).
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contact in the approach region (mesh period A(0.84, 1]), DN1 ¼ m2l2/r1N140 such that, without the friction
bending effect, DWE1.75 mm, which has smaller magnitude than in the recess region due to l14l2 (Fig. 2a).
The bending effect of friction force Df1 ¼ �m2N1o0 decreases the mesh deflection by about 0.5 mm, similar to
the recess region because |Df1| is the same for the recess and approach regions. Combining the effects of
friction force moment and bending, DWE1.25 mm. The mesh deflection variation from the friction bending
effect is 28% of the variation from friction moment. Thus, the effect of friction force moment and bending
are significant for mesh defection in the single-tooth contact region. Note that pure rolling occurs at the
pitch point (mesh period ¼ 0) such that DN1 ¼ Df1 ¼ 0 and DW ¼ 0. The mesh deflection and friction force
are discontinuous at the pitch point due to the discontinuity of sliding velocity direction. For the double-
tooth region (mesh period A(0.1, 0.84]), DN1 ¼ (m2a2l2�m1a1l1)/r1N1E0 and DWE0. In addition,
Df1 ¼ (m1a1�m2a2)N1E0 due to the cancellation from two tooth pairs. Thus, the effect of friction force is
negligible in this area. This may not be the case in dynamic analysis, however.

Summarizing, the contribution of tooth bending caused by friction to static mesh deflection is comparable
to that from the friction force moment. The static analysis example shows that friction moments lower the
static transmission error in the recess region of single-tooth contact and increase the static transmission error
in the approach region of single-tooth contact. The friction bending effect, however, counteracts static
transmission error variations arising from the friction moment in the static case. Thus, the combined effect of
friction moment and friction bending on static transmission error variation (relative to the frictionless case) is
destructive and so the individual effects are less evident in measured static transmission error. As will be
shown, the combined effect in the dynamic case is more complex, however, and can be destructive or
constructive depending on the modal properties. The interaction between this friction bending effect and other
time-varying parameters is potentially important to the stability and dynamic response.

3. Mathematical model

3.1. Modeling of friction bending effect

For involute gear teeth, variation of mesh stiffness and tooth friction are the only excitations in this work.
In contrast to existing gear models that treat gear meshes as one elastic element even when multiple tooth pairs
are in contact, this study models each tooth pair as a separate elastic element, and they are connected in
parallel. Although the number of tooth pairs in contact varies as the gears roll, by assigning zero mesh stiffness
for the tooth pair out of contact there are always Z ¼ ceil(c) pairs of teeth in contact during a mesh period,
where c is the contact ratio and ceil(c) gives the smallest integer greater than c.

Mesh stiffness usually reflects the linear relation between normal load and mesh deflection. As discussed above,
however, the bending effect of friction forces gives rise to pronounced impact on mesh deflection. In other words,
applying the same normal load, the mesh deflections are different for friction and frictionless conditions. This
contribution from friction bending can be included in an effective mesh stiffness. Substituting Eq. (2) into Eq. (1)
and isolating W/N1,i, the mesh stiffness of tooth pair i including the effect of friction bending is

ki ¼
N1;i

W
¼ ~ki½1� sgnðviÞ

~bmi�
�1 � ~ki½1þ sgnðviÞ

~bmi�,

~b ¼
gc sin jc � gs cos jc þ EI=kr

gc cos jc � gs sin jc þ EI=kr

; sgnðviÞ
~bmi

�� ��51, (4)

where ~b is the ratio of compliances of the two forces in Eq. (1), ~ki is the mesh stiffness without friction, and ki is
the effective mesh stiffness with friction. ~b is less than 1 and varies periodically over a mesh cycle. The mean value
of ~b is used in this study.

From Eq. (4), the effective mesh stiffness is affected by the compliance ratio, friction coefficient and
dynamic sliding velocity from nominal gear speed and gear vibration. The effect of the vibratory velocity,
however, is negligible compared to the nominal velocity v̄i ¼ O1r1ðtan j1;i � tan j2;iÞ, where O1 is the nominal
rotation speed of the input gear and jz,i is the pressure angle of tooth i of gear z [16,17]. Low contact ratio
gears (co2) are considered in this study such that Z ¼ 2. For the mesh cycle shown in Fig. 2, the pitch point is
at zero, and the tooth pair in contact from mesh period 0 to c�1+g, defined as the first tooth pair, is in the
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recess region (sgn(v1)o0). The second tooth pair engages from g to 1 and it is in the approach region
(sgn(v2)40).

Defining k̄ as the mean value of frictionless mesh stiffness and e as the ratio of peak–peak to mean value of
the mesh stiffness, the frictionless mesh stiffnesses are ~k1 ¼ k̄½1þ �ð1� cÞ� and ~k2 ¼ 0 for segment 1 (indicated in
Fig. 2b), and ~k1 ¼ 0, ~k2 ¼ k̄½1þ �ð1� cÞ� for segment 3. In segment 2, two tooth pairs share the gear load such
that ~k1 decreases linearly from ak̄½1þ �ð2� cÞ� to ð1� aÞk̄½1þ �ð2� cÞ� and ~k2 increases from ð1� aÞ k̄½1þ
�ð2� cÞ� to ak̄½1þ �ð2� cÞ�, where a is the load sharing factor at mesh period g. a is approximated by the ratio of
the static load of tooth pair 1 to the resultant tooth load, which is calculated by finite element analysis. Note that
~k1 þ

~k2 ¼ k̄½1þ �ð1� cÞ� for single-tooth contact and ~k1 þ
~k2 ¼ k̄½1þ �ð2� cÞ� for double-tooth contact.

The quasi-static frictional mesh stiffnesses shown in Fig. 2b are found by substituting the above ~ki into
Eq. (4). The mesh stiffnesses normalized by k̄ are

Segment 1 : k1=k̄ ¼ k1 ¼ ð1� bÞ½1þ �ð1� cÞ�; k2 ¼ 0

Segment 2 : k1=k̄ varies linearly from k2 to k3; k2=k̄ varies linearly from k3 to k2
k2 ¼ að1� bÞ½1þ �ð2� cÞ�; k3 ¼ ð1� aÞð1þ bÞ½1þ �ð2� cÞ�

Segment 3 : k1 ¼ 0; k2=k̄ ¼ k4 ¼ ð1þ bÞ½1þ �ð1� cÞ�, (5)

where b ¼ ~bm is the friction bending factor. The frictional mesh stiffnesses in segments 1 and 3 are reduced and
increased by b, respectively, due to the friction bending effect. The mesh stiffnesses of high contact ratio gears
(c42) can be treated in a similar way.

3.2. Dynamic model of gear pair with tooth friction

Referring to Fig. 1a, the dynamic normal forces Nz,i and friction forces fz,i act at the mesh positions A and B.
Elasticity of each tooth pair is captured by the variable mesh stiffnesses k1,2 in Fig. 1b. To visually
emphasize the parallel connection of stiffnesses for the individual tooth pairs, each elastic mesh element is
artificially shifted slightly in the x direction. The normal forces and mesh stiffnesses, however, are actually
collinear along the line of action. The gear translations are constrained by bearings with lateral stiffnesses kxz

and kyz. J1,2 are polar moments of inertia. y1,2 are vibratory gear rotations. T1 and T2 are the input torque and
load, respectively. Dynamic transmission error u ¼ r1y1+r2y2 is introduced to remove the rigid body mode.

The equations of motion can be derived by Newtonian or Lagrangian methods to obtain

J1
€y1 ¼ �kmðuþ y1 � y2Þr1 � m

XZ

i¼1

sgnðviÞGikiðuþ y1 � y2Þli þ T1, (6)

J2
€y2 ¼ �kmðuþ y1 � y2Þr2 � m

XZ

i¼1

sgnðviÞGikiðuþ y1 � y2ÞðD� liÞ þ T2, (7)

m1 €x1 ¼ �kx1x1 � m
XZ

i¼1

sgnðviÞGikix1, (8)

m1 €y1 ¼ �ky1y1 � kmðuþ y1 � y2Þ, (9)

m2 €x2 ¼ �kx2x2 � m
XZ

i¼1

sgnðviÞGikix2, (10)

m2 €y2 ¼ �ky2y2 � kmðuþ y1 � y2Þ. (11)

Multiplying Eq. (1) with r1/J1 and Eq. (2) with r2/J2 and summing them yields

Je €uþ m
XZ

i¼1

½Zli=r1 þ ð1� ZÞðD� liÞ=r2�sgnðviÞGiki þ km

( )
ðuþ y1 � y2Þ ¼

T1

r1
. (12)
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Combining Eqs. (8)–(11) and (12), the equations of motion in matrix form are

M €xþ C _xþ ½LðxÞ þ KðxÞ�x ¼ F,

M ¼ diagð½Je;m1;m1;m2;m2�Þ; Je ¼ J1J2=ðr
2
2J1 þ r21J2Þ,

X ¼ ½u;x1; y1;x2; y2�
T; F ¼ ½T1=r1; 0; 0; 0; 0�

T,

L ¼

Lm 0 Lm 0 �Lm

�Lm 0 �Lm 0 Lm

0 0 0 0 0

Lm 0 Lm 0 �Lm

0 0 0 0 0

2
666666664

3
777777775
; K ¼

km 0 km 0 �km

0 kx1 0 0 0

km 0 km þ ky1 0 �km

0 0 0 kx2 0

�km 0 �km 0 km þ ky2

2
666666664

3
777777775
,

Lm ¼ m
XZ

i¼1

½Zli=r1 þ ð1� ZÞðD� liÞ=r2�sgnðviÞGiki,

Lm ¼ m
XZ

i¼1

sgnðviÞGiki,

vi � v̄i ¼ O1r1ðtan j1;i � tan j2;iÞ,

Gi ¼
1
2
½sgnðuþ y1 � y2 � giÞ þ sgnðuþ y1 � y2 � gi þ BÞ�,

km ¼
XZ

i¼1

Giki, (13)

where Lm and Lm include the contributions of tooth friction on rotations and off-line-of-action translations,
respectively; Z ¼ r1

2J2/(r2
2J1+r1

2J2); li ¼ r1 tanj1,i are moment arms of the friction force f1,i with respect to the
center of gear 1; D ¼ (r1+r2)tanj is the length of the line of action; B is the gear backlash; the tooth
separation function GiA{1, 0, �1} determines the existence of drive-side contact (+1), contact loss (0) or
backside contact (�1); and gi is the tooth surface deviation, which is taken as zero in this study. The constant
matrix C is determined from a modal damping ratio z whose fluctuation has no significant impact on
parametric excitation [30]. In Lm, the time-varying mesh stiffness and friction bending effect are included
through ki, and the time-varying moment arm of the friction force is included through li. These are all
parametric excitations. Lm only includes parametric excitations from mesh stiffness variation and friction
bending effect. sgn(vi) and Gi are the nonlinearities.

The power from the friction force is always negative for motion in any of the degrees of freedom because the
friction force always opposes the direction of sliding velocity. As a result, friction dissipates energy, as
expected. In addition, however, the friction force, moment of friction force, and friction bending effect are
time-varying, periodic parametric excitations that excite the system and can, under resonant conditions as
analyzed subsequently, pump energy into the system and lead to large vibration.

The governing equation (13) is a group of nonlinear, time-varying differential equations. Parametric
excitations are included in L and K from the time-varying friction moment arms li and mesh stiffnesses ki

modified by the friction bending effect.
Substitution of k̄ for km in K yields K̄. The eigenvalue problem for the linear time-invariant form of Eq. (13)

averaged over a mesh cycle is K̄fn ¼ o2
nMfn where fn ¼ on/(2p) are natural frequencies. The normalized

vibration modes are

fn ¼ ½fn1; 0;fn3; 0;fn5�
T; n ¼ 1; 2; 3;

f4 ¼ ½0;fn2; 0; 0; 0�
T; f5 ¼ ½0; 0; 0;fn4; 0�

T;
(14)

where fnr are elements of the nth vibration mode. Rotational modes (n ¼ 1,2,3) have coupled motions of u, y1
and y2. Translational modes (n ¼ 4,5) only have off-line-of-action translations x1 and x2.
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To examine the parametric instabilities, we take Gi ¼ 1 (contact loss occurs only after onset of large
vibration). Eq. (13) becomes a linear, time-varying model with periodic, piecewise linear parametric
excitations in a mesh period T. The mesh stiffnesses and moment arms vary in each of three segments in a
period (Fig. 2). Combining Eqs. (5) and (13), the time-varying elements of L and K are as follows.

For segment 1 (t0ptot1 where t0 ¼ 0 and t1 ¼ gT)

k1 ¼ k1k̄ km ¼ ð1� bÞ½1þ �ð1� cÞ�k̄;

k2 ¼ 0 ) Lm ¼ mð1� bÞ½1þ �ð1� cÞ�k̄;

l1 ¼ r0 þ r1Ot Lm ¼ L1;0 þ L1;1t:

(15)

For segment 2 (t1ptot2 where t2 ¼ (c+g�1)T)

k1 ¼ k2k̄ � ðt� t1Þw km ¼ ðk2 þ k3Þk̄;

k2 ¼ k3k̄ þ ðt� t1Þw ) Lm ¼ mk̄ðk3 � k2Þ þ 2ðt� t1Þmw;

l1 ¼ r1 þ ðt� t1Þr1O Lm ¼ L2;0 þ ðt� t1ÞL2;1 þ ðt� t1Þ
2L2;2:

(16)

For segment 3 (t2ptot3 where t3 ¼ T)

k1 ¼ 0 km ¼ ð1þ bÞ½1þ �ð1� cÞ�k̄

k2 ¼ k4k̄ ) Lm ¼ mð1þ bÞ½1þ �ð1� cÞ�k̄

l1 ¼ r2 þ ðt� t2Þr1O Lm ¼ L3;0 þ ðt� t2ÞL3;1:

(17)

where w ¼ (k2�k3)/(t3�t2), O is the mesh frequency, Lp+1,q (segment index p ¼ 0,1,2) are coefficients that
emerge from simplification of Lm (see Appendix A), and r0,1,2 are defined previously in Fig. 2b.

Substitution of Eqs. (15)–(17) into Eq. (13) yields different matrices L and K for each segment. These
matrices, however, have the common form

L ¼ La þ ðt� tpÞLb þ ðt� tpÞ
2Lc,

K ¼ Ka þ ðt� tpÞKb þ ðt� tpÞ
2Kc for 0ptoT , (18)

where La,b,c result from substitution of Lp+1,q and Lm into L. Ka,b,c result from substitution of km into K. La,b,c

and Ka,b,c are different for each segment due to variations of mesh stiffnesses and moment arms. For the
rectangular shape mesh stiffnesses used in this work, Kb,c ¼ 0 for all segments, but that is not true for general
stiffness variations. Note L and K are periodic operators with period T.

With substitution of Eq. (18), Eq. (13) is recast into homogeneous state-space form as

_y ¼ GðtÞy for 0ptoT ,

y ¼ ½x; _x�T; G ¼
0 I

�M�1ðKþ LÞ �M�1C

 !
¼ Ga þ ðt� tpÞGb þ ðt� tpÞ

2Gc, (19)

where G(t+T) ¼ G(t).
4. Parametric instability

4.1. Calculation of the state transition matrix

According to Floquet–Liapunov theory [31], the fundamental matrix P(t) comprised of a complete set of
fundamental solutions for Eq. (19) satisfies PðtÞ ¼ PðtÞeðt�t0ÞQ, where P(t) is a periodic function with period T,
Q is a complex constant matrix, and t0 is the initial time. After one period T,

Pðtþ TÞ ¼ Pðtþ TÞeðtþT�t0ÞQ ¼ PðtÞeQT , (20)
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where eQT ¼ P�1ðt0ÞPðt0 þ TÞ ¼ Uðt0 þ T ; t0Þ is the state transition matrix or monodromy matrix. The
stability of fundamental solutions is determined by the eigenvalues li of the state transition matrix: |li|o1
indicates stable solutions; |li|41 indicates unstable; and li ¼ 11/m for integer m means period-mT solutions.

As discussed above, the linear, time-varying model is expressed as three polynomial matrix forms associated
with the three segments of one period defined previously. The state transition matrix of the system is obtained
by the state transition matrices of the three segments

UðT ; 0Þ ¼ Uðt1; 0ÞUðt2; t1ÞUðT ; t2Þ, (21)

where Uðtpþ1; tpÞ ¼ P�1ðtpÞPðtpþ1Þ. The state transition matrix for any segment with tpptotp+1 is expanded
using Peano–Baker series [32,33] as

Uðtpþ1; tpÞ ¼ Iþ

Z tpþ1

tp

Gðt0 � tpÞdt0 þ
Z tpþ1

tp

Gðt1 � tpÞ

Z t1

tp

Gðt2 � tpÞdt2 dt1

þ

Z tpþ1

tp

Gðt1 � tpÞ

Z t1

tp

Gðt2 � tpÞ

Z t2

tp

Gðt3 � tpÞdt3 dt2 dt1 þ � � � . (22)

Let ~ti ¼ ti � tp such that,Z ti�1

tp

Gðti � tpÞdti ¼

Z ti�1�tp

0

Gð~tiÞd~ti ) Uðtpþ1; tpÞ ¼ Uðhp; 0Þ, (23)

where hp ¼ tp+1�tp. Evaluation of the integrals in Eq. (22) and the polynomial form of G gives a recursive
sequence for calculation of the state transition matrix as

UPðhp; 0Þ ¼ Iþ T1ðhpÞ þ T2ðhpÞ þ � � � þ TnðhpÞ þ � � � ,

T1 ¼
X3
i¼1

T1;i ¼ G0hp þG1h
2
p=2þG2h

3
p=3,

Tn ¼
X2nþ1

i¼1

Tn;i nX2,

Tn;1 ¼
1

n
hpG0Tn�1;1,

Tn;2 ¼
hp

nþ 1
ðG0Tn�1;2 þ hpG1Tn�1;1Þ,

Tn;i ¼
1

nþ i � 1

X2
j¼0

hjþ1
p GjTn�1;i�j ; i ¼ 3; 4; . . . 2n� 1,

Tn;2n ¼
h2

p

3n� 1
ðG1Tn�1;2n�1 þ hpG2Tn�1;2n�2Þ,

Tn;2nþ1 ¼
1

3n
h3

pG2Tn�1;2n�1, (24)

where Tn denotes the sequence of terms in Eq. (22).
For comparison, a numerical integration method [34–36] is applied. The time span hp is discretized into m

divisions, where Di is the time step of division i (tiotpti+1) and Ci is the mean value of G over a mesh cycle.
Thus,

UI ðhp; 0Þ ¼
Ym
i¼1

½I þ DiCi þ
1
2
ðDiCiÞ

2
þ � � � þ 1

k!ðDiCiÞ
k
þ � � ��

Ci ¼
1

Di

Z
Di

ðG0 þG1tþG2t2Þdt ¼ G0 þ
tiþ1 þ ti

2
G1 þ

t3iþ1 � t3i
3Di

G2. (25)

The numerical integration method applies for arbitrary functions G. The recursive process applies only to G

having polynomial forms.



ARTICLE IN PRESS
G. Liu, R.G. Parker / Journal of Sound and Vibration 320 (2009) 1039–1063 1049
To validate the recursive process and compare performance against numerical integration, an example
system is selected as

€xþ ½aðt� nTÞ þ b�x ¼ 0; nTptoðnþ 1ÞT . (26)

The stiffness term is a periodic sawtooth function. The fundamental and state transition matrices are [31]

PðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
atþ b
p

J1=3ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
atþ b
p

J�1=3ðsÞ

ðatþ bÞJ�2=3ðsÞ �ðatþ bÞJ2=3ðsÞ

" #
; s ¼

2ðatþ bÞ3=2

3a
, (27)

UBðhp; 0Þ ¼ P�1ð0ÞPðhpÞ. (28)

The relative error of the recursive process with respect to the analytical solution is examined in Fig. 4a.
There is a critical value nc for a given hp above which the error is insensitive to n and the error is extremely
small. The errors in the integration method shown in Fig. 4b are higher than for the recursive process for
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comparable computation. Computation for the recursive process is slightly less than the integration method
given n ¼ 20, m ¼ 200 and hp ¼ 0.5.

The recursive and numerical integration methods use Peano–Baker and exponential series expansions,
respectively. Both have truncation errors. The truncation error of exponential series is smaller than Peano–Baker
series for the same number of terms. The integration method, however, has additional discretization error. On the
other hand, the computational demands of the recursive process increase significantly with the number of terms.
In this study, the recursive process is more efficient than the integration method because a smaller number of
terms provides the required accuracy. Overall, the recursive process has better accuracy and requires less
computation than numerical integration for systems expanded as polynomial forms.

4.2. Perturbation approximation

This study only considers small ratios of mesh stiffness variation to mean stiffness (e51), small damping
(z51) and small coefficient of friction (m51). The nonlinear, time-varying terms in Eq. (13) for gear pairs with
co2 are linearized in these quantities as

km ¼ k1 þ k2 ¼ k̄ þ � ~K ) ~K ¼ ðk1 þ k2 � k̄Þ=�,

Lm ¼ mðk2 � k1Þ ¼ � ~Lm ) ~Lm ¼ gðk2 � k1Þ,

Lm ¼ �
g

r1r2
fk2½Zr2l2 þ r1ð1� ZÞðD� l2Þ� � k1½Zr2l1 þ r1ð1� ZÞðD� l1Þ�g ¼ � ~L, (29)

where g ¼ m/e denotes the ratio of friction to mesh stiffness variation. ~K , ~Lm, ~L and g are O(1). These time-
varying functions are expanded in Fourier series as

~L ¼ g
X1
s¼1

Lse
isOt þ c:c:; ~Lm ¼ g

X1
s¼1

wse
isOt þ c:c:; ~K ¼

X1
s¼1

Yse
isOt þ c:c:, (30)

where Ls, ws andYs are known complex Fourier amplitudes. The symbol c.c. represents the complex conjugate
of preceding terms.

The associated operators are L ¼ � ~L and K ¼ K̄þ � ~K, where ~L and ~K are obtained from substitution of Lm,
Lm and km into L and K. Let f ¼ [fn] be the modal matrix from Eq. (14). Applying the modal transformation
x ¼ /u, Eq. (13) is recast into modal coordinates as

€un þ 2�Bon _un þ o2
nun þ �

X5
r¼1

ðfT
n
~Lfr þ fT

n
~KfrÞur ¼ 0; n ¼ 1; 2; 3; 4; 5, (31)

where B ¼ z/e ¼ O(1). Using Eq. (14), fT
n
~Lfr and fT

n
~Kfr are

fT
n
~Lfr ¼

0 if rX4;

Dnr
~L if n; ro4;

�Dnr
~Lm if ro4 and nX4;

8>><
>>:

fT
n
~Kfr ¼

0 if rX4 or ro4 and nX4;

Enr
~K if n; ro4;

(

Dnr ¼ fn1ðfr1 þ fr3 � fr5Þ,

Enr ¼ ðfn1 þ fn3 � fn5Þðfr1 þ fr3 � fr5Þ, (32)

where Dnr 2 R is asymmetric and Enr ¼ Ern 2 R is symmetric. Enr is the product of the mesh deflections in
modes n and r. Dnr is the product of rotational transmission error in mode n and mesh deflection in mode r.
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Substitution of Eq. (32) into Eq. (31) yields

€un þ 2�Bon _un þ o2
nun þ �

X3
r¼1

ðDnr
~Lþ Enr

~KÞur ¼ 0; n ¼ 1; 2; 3, (33)

€un þ 2�Bon _un þ o2
nun � �

X3
r¼1

Dnr
~Lmur ¼ 0; n ¼ 4; 5. (34)

Observing the upper limit of the sum in Eq. (33), the rotation modes 1, 2 and 3 are coupled together in
Eq. (33) through time-varying friction moments and mesh stiffness. Strong interactions between these modes
may lead to combination instabilities. These rotation modes are decoupled from the translation modes 4 and 5
in Eq. (33). The translation modes, however, are impacted by rotation modes in Eq. (34), although no
coupling exists between the two translation modes.

Applying the method of multiple scales, the solutions of Eqs. (33) and (34) are expressed as

un ¼ un;0ðt; tÞ þ �un;1ðt; tÞ þ � � � n ¼ 1; 2; 3; 4; 5, (35)

where t ¼ et. Substituting Eq. (35) into Eqs. (33) and (34) and separating terms with the same power in e yields

€un;0 þ o2
nun;0 ¼ 0; n ¼ 1; 2; 3; 4; 5, (36)

€un;1 þ o2
nun;1 ¼ �2

q2un;0

qtqt
� 2Bon

qun;0

qt
�
X3
r¼1

ðDnr
~Lþ Enr

~KÞur;0; n ¼ 1; 2; 3, (37)

€un;1 þ o2
nun;1 ¼ �2

q2un;0

qtqt
� 2Bon

qun;0

qt
þ
X3
r¼1

Dnr
~Lmur;0; n ¼ 4; 5. (38)

The general solutions of Eq. (36) are

un;0 ¼ AnðtÞeiont þ c:c:; n ¼ 1; 2; 3; 4; 5. (39)

Substituting Eqs. (30) and (39) into Eq. (37) yields

€un;1 þ o2
nun;1 ¼ � 2ione

iont qAn

qt
� 2BonðionÞAne

iont

�
X3
r¼1

X1
s¼1

ðDnrgLs þ EnrYsÞ½Are
iðsOþorÞt þ Āre

iðsO�orÞt� þ c:c:; n ¼ 1; 2; 3, (40)

where an overbar means the complex conjugate.
By letting sO ¼ op+oq+es (p, qp3), where s is a detuning parameter, two-mode (paq) combination

instabilities or single-mode (p ¼ q) instabilities of rotation modes are examined. Elimination of secular terms
leading to unbounded response in Eq. (40) requires

2iop

qAp

qt
þ 2iBo2

pAp þ ðDpqgLs þ EpqYsÞĀqe
ist ¼ 0, (41)

2ioq

qAq

qt
þ 2iBo2

qAq þ ðDqpgLs þ EqpYsÞĀpe
ist ¼ 0. (42)

The solutions of Eqs. (41) and (42) are

Ap ¼ ape
lt; Aq ¼ aqe

ðl̄þisÞt, (43)
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where ap and aq are complex constants, and l are roots of the characteristic equation obtained from Eqs. (41)
and (42) such that

l ¼
1

2
f�Bðop þ oqÞ þ is� ½B2ðop � oqÞ

2
� s2 þ 2iBsðop � oqÞ þC�1=2g,

C ¼
1

opoq

ðDpqgLs þ EpqYsÞðDqpgL̄s þ EqpȲsÞ. (44)

The real parts of l determine the stability of the solutions. Note C is complex in general.
Combination instabilities of the difference type are examined by letting sO ¼ op�oq+es (op4oq) where p,

qp3. The l analogous to Eq. (44) are

l ¼
1

2
f�Bðop þ oqÞ þ is� ½B2ðop � oqÞ

2
� s2 þ 2iBsðop � oqÞ �C�1=2g. (45)

The interaction between rotation modes 1, 2 and 3 in Eq. (14) and translation modes 4 and 5 is examined by
letting sO ¼ op+oq+es (po4, qX4). The solvability conditions for Eq. (40) are

2iop

qAp

qt
þ 2iBo2

pAp ¼ 0, (46)

2ioq

qAq

qt
þ 2iBo2

qAq � gDqpwsĀpe
ist ¼ 0. (47)

The nontrivial solutions of Eqs. (46) and (47) are

Ap ¼ ape
�iBopt Aq ¼ aqe

iðBopþsÞt. (48)

These solutions are always bounded, so there are no combination instabilities between a rotation mode and
a translation mode. The same is true for combination instabilities between two translation modes, including
for p ¼ q. As a result, the following results address interactions between rotation modes 1, 2 and 3.

5. Results and discussion

A single-mesh gear pair with the nominal parameters k̄ ¼ 1:95� 108 N=m, a ¼ 0.6, g ¼ 0.28, c ¼ 1.5,
z ¼ 0.001, m ¼ 0.1 and b ¼ 0.5m is examined from this point, where m ¼ 0.1 is consistent with past studies on
gear dynamics [6,16,17]. The dimensionless natural frequencies of the rotation modes are f1 ¼ 1.55, f2 ¼ 2.09
and f3 ¼ 5.70. The natural frequencies of the translation modes are f4 ¼ 1.85 and f5 ¼ 2.34.

5.1. Parametric instability from variable mesh stiffness

Without friction (m ¼ g ¼ 0), the only parametric excitation is from the mesh stiffness. From Eqs. (44) and
(45) in the absence of damping (z ¼ 0),

l ¼
1

2
ðis�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C� s2
p

Þ for sO ¼ op þ oq þ �s,

l ¼
1

2
ðis�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C� s2
p

Þ for sO ¼ op � oq þ �s,

C ¼ E2
pq Ysj j

2=ðopoqÞ40. (49)

The response for mesh frequencies near sum type instability regions is bounded (Re(l)o0) when s2XC and
unbounded (Re(l)40) when s2oC. Thus, the instability boundaries are sO ¼ op þ oq � �ðjEpqYsj=

ffiffiffiffiffiffiffiffiffiffiffiopoq
p

Þ.
From Eq. (45), difference type instabilities do not occur because Re(l) ¼ 0 for them.



ARTICLE IN PRESS
G. Liu, R.G. Parker / Journal of Sound and Vibration 320 (2009) 1039–1063 1053
The primary (s ¼ 1) instability intervals for single-mode and sum type instabilities are shown in Fig. 5 for
perturbation analysis and the recursive process. These methods agree well even up to e ¼ 0.3. The largest
parametric instability region occurs when mesh frequency is in the boundary of O ¼ 2o37e|E33Y1|/o3 because
of the maximum mesh strain energy in mode 3, i.e., E33 is large. The two-mode instabilities p ¼ 1, q ¼ 3 and
p ¼ 2, q ¼ 3 have much smaller instability regions because |E13|5|E33| and |E23|5|E33|. With fixed e ¼ 0.1, the
instability interval for primary single-mode instability is from fm ¼ 11.2 to 11.6, where fm ¼ O/2p. Fig. 6 shows
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Fig. 5. Instability boundaries for changing dimensionless mesh stiffness variation e and m ¼ 0, a ¼ 0.6, b ¼ 0, c ¼ 1.5, z ¼ 0, g ¼ 0.28
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linear dynamic responses excited by six mesh frequencies near the instability interval obtained by numerical
integration. The amplitudes increase exponentially for fm ¼ 11.2 and 11.6 in Figs. 6a and b. On the other hand,
Figs. 6c and d show stable amplitudes for fm ¼ 11.1 and 11.7. The unstable responses at fm ¼ 7.25 and 7.79 for
sum type instabilities are shown in Figs. 6e and f, respectively. Therefore, the instability boundary predictions
by the recursive process and perturbation approximation agree well with numerical simulation.
5.2. Effect of tooth friction on parametric instability

With friction and damping, the real parts of l in Eqs. (44) and (45) are

ReðlÞ ¼
1

2
�Bðop þ oqÞ �

ffiffiffi
2
p

2
½ðA2 þ B2Þ

1=2
þ A�1=2

( )
,

A ¼
B2ðop � oqÞ

2
� s2 þCR for sO ¼ op þ oq þ �s;

B2ðop � oqÞ
2
� s2 �CR for sO ¼ op � oq þ �s;

8<
:

B ¼
2Bsðop � oqÞ þCI for sO ¼ op þ oq þ �s;

2Bsðop � oqÞ �CI for sO ¼ op � oq þ �s:

(
(50)

The stability boundaries (Re(l) ¼ 0) are determined as ðA2 þ B2Þ
1=2
þ A ¼ 2B2ðop þ oqÞ

2. Manipulating
this yields the boundaries of combination instability with friction as

sO ¼ op þ oq þ
1

8zopoq

ðop � oqÞCI � ðop þ oqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

I þ 16z2opoqðCR � 4z2opoqÞ

q� �
,

sO ¼ op � oq þ
1

8zopoq

ðoq � opÞCI � ðop þ oqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

I þ 16z2opoqð�CR � 4z2opoqÞ

q� �
,

CR ¼ ReðCÞ ¼
1

opoq

½�2E2
pqjYsj

2 þ m2DpqDqpjLsj
2 þ m�EpqðDpq þDqpÞReðLsȲsÞ�,

CI ¼ ImðCÞ ¼
m�

opoq

EpqðDpq �DqpÞImðLsȲsÞ, (51)

where op4oq and Ȳs is the complex conjugate of Ys.
The effects of mesh stiffness variations and friction bending effect are incorporated in e|Ys|. The effects of

friction moments are included in m|Ls|. The difference type instabilities, which are absent for m ¼ 0, arise when
ma0. Each instability region occurs as a backbone (e.g., ðop � oqÞCI=8zopoq for sum type instability) and a
symmetric deviation (the terms after 7 in Eq. (51)). The backbones are linear functions of m and e whose
slopes are determined by modal properties, mesh stiffness variations and sliding friction. For the same two
modes and the same s, the backbone slopes for the sum and difference type instabilities have equal magnitude
and opposite sign. The backbone slopes for the sum type are negative; they are positive for the difference type.
The deviations can be approximated as linear functions of m and e with Taylor expansion of the square roots.

Fig. 7 shows the instability boundaries varying with m while the friction bending b ¼ 0. Mesh frequency fm

varies from 1.7 to 12 covering most combination and single-mode instabilities. The perturbation solutions
agree well with numerical solutions. For a combination instability to occur, the corresponding quantity inside
the square root of Eq. (51) (call it D) must be positive. This quantity D, which also governs the width of the
instability region, depends on strength of parametric excitation, friction, modal mesh strain energy (as
captured by Epq and Dpq), natural frequency and damping. For fixed system parameters, the modal mesh
strain energy dictates existence and width of a possible instability. For instance, sum type instability for modes
1, 2 does not occur because D ¼ �1.6� 10�5o0. Sum type instabilities involving modes 1, 3 and modes 2, 3
are present because D ¼ 0.0014 and 0.0009, respectively, a result of the larger modal mesh strain energy in
mode 3. The instability intervals for modes 1, 3 are larger than for modes 2, 3 for the same type of instability
(sum or difference) because mode 1 has stronger mesh strain energy than mode 2. Note that in the absence of
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damping D40 and instability always occurs. In essence, there is a critical mesh strain energy required to
overcome the damping and create instability.

The sum type instability intervals (i.e., deviations) are larger than the difference type for the same two
modes, as proved in Appendix B. The sum type instability occurs even when m ¼ 0 and is more sensitive to m
and e than the difference type. The widths of the two-mode instability boundaries (sum and difference types)
increase almost linearly with m.

For single-mode instabilities (p ¼ q), CI ¼ 0 and the instability boundaries simplify to

sO ¼ 2op �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�EppYs þ mDppLsj

2=o2
p � 4z2o2

p

q
. (52)

The backbones vanish, in contrast to the two-mode instabilities. The instability intervals depend on eYs

(mesh stiffness variation and friction bending) and mLs (friction moments). In practice, e4m, Epp4Dpp and
|Ys|4|Ls| due to the moment arm of friction li being less than the base radius. Thus, |eEppYs|b|mDppLs| and
the single-mode instabilities are sensitive to the friction bending effect and mesh stiffness variations while less
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sensitive to friction moments as evident in Fig. 7. Because |E33|b|E11|4|E22|, primary instabilities of modes 1
and 3 emerge in Fig. 7, and the interval of mode 3 is much larger than that of mode 1. Higher order
instabilities (s ¼ 1; 2; . . . ; 6) also exist for mode 3. The intervals for odd order (s ¼ 1,3,5) are larger than for
even order (s ¼ 2,4,6) because, for rectangular wave mesh stiffness, odd harmonics have higher magnitudes
than even harmonics (Fig. 8).

5.3. Effect of friction bending on parametric instability

The effects of friction bending ratio b on the mesh stiffness harmonicsYs are shown in Fig. 8. Given e ¼ 0.3,
c ¼ 1.5, a ¼ 0.6 and g ¼ 0.26, the odd order harmonics are not sensitive to b while the even order harmonics
are. As a result, the instability intervals with odd s are insensitive to b while those with even s are sensitive to b.
As illustrated in Fig. 9, the intervals with s ¼ 1,3,5 are almost independent of b. The instabilities with s ¼ 2, 4,
6, such as, sfmE2f3 (s ¼ 2, 4, 6) and sfmEf3�f1 (s ¼ 2), however, change with b. The single-mode instabilities
for p ¼ q ¼ 3 exist even for s ¼ 2, 4, 6 because the third mode has the maximum mesh strain energy even
though the |Y2,4,6| are much smaller than |Y1|. For p ¼ q ¼ 3, the single-mode instability intervals with s ¼ 2,
4, 6 are increased by the bending ratio b, while the intervals for s ¼ 4, 6 are much smaller than for s ¼ 2 (note
different scales in two graphs) because |Y4|o|Y6|o|Y2| in Fig. 8.

5.4. Effect of contact ratio on parametric instability

The contact ratio c affects both Ls and Ys (i.e., the harmonics of parametric excitation included in C of
Eq. (51)), so the impact of contact ratio on instability boundaries changes with tooth friction. Fig. 10 shows
the effect of contact ratio on single-mode and two-mode sum type instabilities with tooth friction and bending
effect. The sum type instability boundaries without tooth friction are

O ¼ op þ oq �
ðop þ oqÞ

2opoq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2jEpq

~Ysj
2 � 4z2o2

po2
q

q
, (53)

where the harmonics of frictionless mesh stiffness are

~Ys ¼
k̄

sp
sin spðc� 1Þ½cos spðc� 1þ 2gÞ þ i sin spðc� 1þ 2gÞ�. (54)



ARTICLE IN PRESS

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

2.5

3

3.5

4

4.5

Friction bending β

5

6

7

8

9

10

11

12

D
im

en
si

on
le

ss
 m

es
h 

fre
qu

en
cy

 f m
D

im
en

si
on

le
ss

 m
es

h 
fre

qu
en

cy
 f m
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(*: recursive process; : perturbation): (a) fm from 1.7 to 4.5 and (b) fm from 5 to 12.
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Without tooth friction, the instability boundaries for varying contact ratio have sinusoidal profiles
symmetric about c ¼ 1.5 as j ~Ysj ¼ k̄j sin spðc� 1Þj=ðspÞ, and the number of waves for each profile depends
on s.

The instability boundaries with friction shown in Fig. 10 are calculated by the perturbation and numerical
recursive methods. The boundaries do not have sinusoidal profiles. The two-mode instabilities are determined
by the complicated functions of CR andCI in Eq. (51) that are affected by the contact ratio c, friction moment
m, and friction bending b. The boundaries of two-mode instabilities are sensitive to m, and the boundaries of
single-mode instabilities for even s are sensitive to b. The sum type instability boundaries shown in Fig. 10 are
no longer symmetric about c ¼ 1.5. The contact ratio having maximum boundary width is shifted to lower c

due to tooth friction. The instability intervals with tooth friction are greater than those without friction
because of the increased excitation. The secondary instability (s ¼ 2) at f3 occurs even for c ¼ 1 due to the
sensitivity to friction bending. The influence of contact ratio on the primary instability at 2f3 is minimal
because that instability is insensitive to friction moment and bending effect as shown previously. The profile of
the primary instability in Fig. 10 is almost a symmetric sinusoidal profile even with friction.
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Note that c�1+gp1 is required according to Fig. 2. The analytical and numerical results for cX2�g ¼ 1.85
with the selected g ¼ 0.15 have no physical meaning.

5.5. Effect of modal damping on parametric instability

From Eqs. (51) and (52), the instability boundaries decrease with an increase in modal damping. Different
types of instabilities have different critical damping where the unstable interval vanishes. Fig. 11 shows the
influence of damping on single-mode and two-mode combination instabilities. The perturbation and
numerical solutions agree well. The primary single-mode instability has the biggest critical damping due to the
strongest mesh strain energy in mode 3. The other instabilities decrease more rapidly than for the primary
single-mode. The f1+f3 combination instability has greater critical modal damping compared to the f2+f3
combination due to the higher mesh strain energy of mode 1 than mode 2. The critical modal damping
depends on tooth friction, mesh stiffness variation and contact ratio.

5.6. Influence of tooth friction on dynamic response

The parameters of two practical gears listed in Table 1 are used to generate finite element gear models. For
comparison purposes, the realistic mesh stiffness variations over a mesh cycle calculated from the finite
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element model are used as the frictionless mesh stiffness in the analytical model. The mesh parameters are
k̄ ¼ 2.98e8N/m, T1 ¼ 100Nm, m ¼ 0.1, c ¼ 1.4 and z ¼ 0.02. The friction bending effect is inherently
included in the finite element analysis. The bending factor b used in the analytical model is estimated from
Eq. (4) where the deflection and load are calculated from finite element static analysis.

The parametric instabilities for two-mode and single-mode combinations result in exponentially growing
dynamic response, which eventually triggers nonlinear contact loss. The nonlinearity suppresses the growth of
the amplitude and usually yields a steady periodic response. To study the sensitivity of nonlinear response on
tooth friction and validate the proposed analytical model, numerical simulations of the nonlinear analytical
model in Eq. (13) and the finite element model are compared in Fig. 12a. Fig. 12b shows the spectral details.
Decreasing speed sweep analyses are conducted to cover the frequency range that includes the fundamental
resonance of rotational mode 1 at f1 ¼ 1835Hz and higher harmonic resonances of rotational mode 3 at
f3 ¼ 6924Hz. The root-mean-square values of the dynamic transmission error u are calculated by

urms ¼
1

nT

Z nT

0

ðu� ūÞ2 dt

� �1=2
, (55)

where ū is the mean value of u. The analytical models with and without friction bending effect agree well with
the finite element model in Fig. 12a for the resonances at 1731 and 1835Hz where the fourth harmonic excites
mode 3 (Fig. 12b) and the first harmonic excites mode 1, respectively. Tooth friction has negligible effect on
these two single-mode resonances and in the off-resonant frequency ranges.

The finite element results reveal that tooth friction significantly excites the resonance at 2308Hz where the
third harmonic (s ¼ 3) excites mode 3 as shown in Fig. 12b. The analytical model with friction bending effect
shows a similar strong influence of tooth friction on this resonance. The analytical result for m ¼ 0.1 and
b ¼ 0, which ignores the friction bending effect, cannot capture the strong impact of tooth friction on this
resonance. This implies that the friction bending effect plays a key role in exciting this higher harmonic
resonance. These findings confirm the conclusions from the stability analysis.
6. Conclusions

A translational–rotational model with parametric excitations from variable mesh stiffness, tooth sliding
friction moments, and a heretofore unexamined friction bending effect is established for a single-mesh gear
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pair. A numerical recursive method based on Floquet theory and a perturbation analysis examines the
associated parametric instabilities and show strong agreement. The analytical expressions for instability
boundaries reveal how key parameters impact the instabilities. The nonlinear responses from the analytical
model and a finite element benchmark also agree even when contact loss occurs.
1.
 Combination instabilities between a rotation mode and a translation mode or two translation modes
cannot occur. Sum type and single-mode instabilities can occur for both frictional and frictionless
conditions. Difference type instabilities occur only when friction is present.
2.
 Two-mode combination instabilities are sensitive to the friction moment and bending effect. Single-mode
instabilities are insensitive to the friction moment but sensitive to the friction bending effect. The instability
interval widths depend nearly linearly on mesh stiffness variations.
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3.
 For the same type of instabilities, the instability intervals for different modes depend on the total
mesh strain energy of the mode or the modes in combination. The mesh strain energy needs to be over a
critical value to cause the instability. The sum type instability intervals are larger than for the difference
type.
4.
 The effects of contact ratio on the instability intervals of two-mode combination and single-mode
instabilities are altered significantly by the friction moments and the friction bending effect, respectively.
The tooth friction destroys symmetry of the instability boundaries for varying contact ratio. The friction
bending can cause instability even for integer contact ratios.
5.
 The proposed analytical model agrees with a finite element benchmark for nonlinear response due to
parametric instabilities, while the model without considering friction bending fails to predict the strong
influence of tooth friction on certain parametric instabilities. The nonlinear dynamic analyses confirm that
the friction bending effect can significantly alter the vibration.

Appendix A. Expansion of terms in Eq. (18)

L1;0 ¼ �mk1k̄
Zr0r2 þ r1ð1� ZÞðD� r0Þ

r1r2
; L1;1 ¼ �mk1k̄O

Zr2 � r1ð1� ZÞ
r2

, (A.1)

L2;0 ¼
mk̄

r1r2
fr1ð1� ZÞ½k3ðD� r1 þ 2pr1Þ � k2ðD� r1Þ� þ r2Z½k3ðr1 � 2pr1Þ � k2r1�g,

L2;1 ¼
mk̄O

r2
½r2Zþ r1ð1� ZÞ�ðk3 � k2Þ þ

2mw

r1r2
½r2Zðr1 � pr1Þ þ r1ð1� ZÞðD� r1 þ pr1Þ�,

L2;2 ¼
2mwO

r2
½ð1� ZÞr1 � Zr2�, (A.2)

L3;0 ¼ mk4k̄
Zr2r2 þ r1ð1� ZÞðD� r2Þ

r1r2
; L3;1 ¼ mk4k̄O

Zr2 � r1ð1� ZÞ
r2

. (A.3)

Appendix B. Proof of instability deviation relation

Examination of Eq. (51) shows that proving the deviation of a sum type instability is larger than for the
difference type is achieved by showing CRX0. To begin, consider the first component equation of the
eigenvalue problem K̄fp ¼ o2

pMfp, which gives the following relations between the modal deflections:

fp3 � fp5 ¼
Jeo2

p � k̄

k̄
fp1 ) fp1ðfp1 þ fp3 � fp5Þ ¼

Jeo2
p

k̄
f2

p140. (B.1)

From Eqs. (14), (32) and (B.1),

DpqDqp ¼ fp1fq1ðfp1 þ fp3 � fp5Þðfq1 þ fq3 � fq5Þ ¼
Jeopoq

k̄
fp1fq1

� �2

40. (B.2)

This implies Dpq and Dqp have the same sign. The following is for positive Dpq and Dqp, with straightforward
modification for negative values. From (Dpq�Dqp)

2
X0,

Dpq þDqp

�� ��X2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DpqDqp

p
. (B.3)

The Fourier coefficients in Eq. (30) are expressed in real and imaginary parts as

Ls ¼ LR þ iLI

Ys ¼ YR þ iYI

)
) ReðLsȲsÞ ¼ LRYR þ LIYI . (B.4)
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From Eqs. (51), (B.3) and (B.4),

CR ¼
1

opoq

ðCR1 þCR2Þ, (B.5)

CR1 ¼ �
2E2

pqY
2
R þ m2DpqDqpL2

R þ m�EpqðDpq þDqpÞLRYRX �EpqYR þ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DpqDqp

p
LR

� 	2
X0,

CR2 ¼ �
2E2

pqY
2
I þ m2DpqDqpL2

I þ m�EpqðDpq þDqpÞLIYIX �EpqYI þ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DpqDqp

p
LI

� 	2
X0. (B.6)

Combination of Eqs. (B.5) and (B.6) yields CRX0.
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